lack of knowledge of the subsequent reaction of pip radicals with excess pip (i.e., total consumption of pip), and the relatively low [pip]0/[TPPFeC]]0 ratios used to keep the autoreduction rate slow enough to follow by FT NMR. The relatively low sensitivity of NMR also did not permit a significant variation in [TPPFeCI]

- (41) C. E. Castro, personal communication.
- (42) The experimental conditions were such that thermal effects from the light can be totally discounted.
- (43) No attempt was made to fit the reduction rates to a rate law
- (44) L. A. Constant and D. G. Davis, *Anal. Chem.*, **47**, 2253 (1975).
 (45) A. P. Tomilov, S. G. Mairanovskii, M. Y. Fioshin, and V. A. Smirnov in "Electrochemistry of Organic Compounds", Wiley, New York, N.Y., 1972, Chapter VIII.
- (46) This > 1 V barrier can be overcome in an outer-sphere electron transfer if one of the products (i.e., pip) is very short lived, i.e., <10⁻¹⁵ s (J. O'M. Bockris and A. K. N. Reddy, "Modern Electrochemistry", Plenum Press, New York, N.Y., 1970, Chapter 9). Such radicals, however, have been shown to have lifetimes ≥1 μs (ref 37).
- (47) The authors are indebted to M. Gouterman for this suggestion.

- (48) F. H. Westheimer, Chem. Rev., 61, 263 (1961).
 (49) The isotope effect is not likely to be due to differential aggregation of the free pip, since lowering [pip]o by 30% maintained the same relative ratio of the pip/pip-d, autoreduction ratio.
- (50) Attempts to obtain quantitative rate data for comparing NOHpip with NODpip in C²H₂Cl₂ at 25 °C were frustrated by the formation of a small but per-sistent amount of (TPPFe)₂O in spite of all attempts to remove both water and oxygen. The pyrrole-H peak of (TPPFe)2O partially overlaps the same peak for the averaged (S = 0, S = 2) ferrous complexes, and interfered with quantitative integrations. Deconvolution repeatedly indicated a The system of (TPPFe)₂O was overcome by using degassed toluene-d₈ at 25 °C, where the dimer could not be detected. In this case, identical solutions reached 60% reduction in 163 min for NOHpip, and in 265 min for NODpip, confirming a retardation by deuterium of a factor of \sim 1.6.
- (51) Mixed ligand complexes are formed when bases such as acetate, pyridine, or imidazole are added.
- (52) S. Andreades and E. W. Zahnow, J. Am. Chem. Soc., 91, 4181 (1969).

Synthetic and Mechanistic Studies of the Reduction of α,β -Unsaturated Carbonyl Compounds by the Binuclear Cluster, NaHFe₂(CO)₈

James P. Collman,* Richard G. Finke, Paul L. Matlock, Robert Wahren, Robert G. Komoto, and John I. Brauman*

Contribution from the Department of Chemistry, Stanford University, Stanford, California 94305. Received November 8, 1976

Abstract: A detailed synthetic and mechanistic study of the reactions of $NaHFe_2(CO)_8$ is presented including efficient preparations of $Na_2Fe_2(CO)_8$ and $NaHFe_2(CO)_8$. The use of $NaHFe_2(CO)_8$ for the mild, high-yield reductions of only the olefinic bond in α , β -unsaturated esters, ketones, aldehydes, amides, lactones, and nitriles is documented and these reductions are compared with other available methods. A mechanism for these reductions is presented. The key pieces of evidence for the mechanism, (a) a first order each in metal hydride and activated olefin, (b) isotopic labeling experiments demonstrating a reversible, regiospecific hydride addition step, and (c) a reasonably large, inverse isotope effect ($k_D/k_H = 3.5$), serve as diagnostics of the mechanism for reduction of activated olefins. We have considered plausible NaHFe2(CO)8 dissociation, fragmentation, or fragmentation-recombination mechanisms. The simplest interpretation of these results is that the active reagent in these reductions is binuclear NaHFe2(CO)8, although other possibilities are suggested and discussed. The above evidence and a complete reaction stoichiometry suggest that this mechanism involves concerted reversible and regiospecific NaHFe2(CO)8 addition to activated olefins such as RCH=CHCOR', to yield $Na^+(RCH_2CH(Fe_2(CO)_8)COR')^-$, followed by competing ratedetermining steps of iron-iron bond cleavage or protonolysis affording Na+[RCH2CH(Fe(CO)4)COR']- and RCH₂CH₂COR', respectively. This reduction mechanism using binuclear NaHFe₂(CO)₈ is compared with that of mononuclear NaHFe(CO)4. The effect of ion pairing in these reductions, the PPh3 and CO ligand substitution mechanism of NaH-Fe₂(CO)₈, as well as the acid-independent and acid-dependent mechanisms of NaHFe₂(CO)₈ decomposition are also presented.

Introduction

Transition metal carbonyl clusters¹ and their hydrides² have been known for many years, the first review on clusters appearing in 1965.^{1g} Since that time, many studies probing the chemical composition and structural types,^{1,4} the simple methods of synthesis,^{1b} the relationship between the number of skeletal electrons and the structure,³ and the fluxional behavior⁵ of clusters have appeared. However, general, systematic, efficient synthetic routes for the preparation of clusters still do not exist.⁶ Unfortunately, even less is known about the chemical reactivity^{7,8,9} (especially the catalytic organometallic chemistry) and detailed reaction mechanisms¹⁰ of clusters.

Our interest in binuclear and higher transition metal cluster compounds arises from the possibility that they will exhibit chemistry unknown to mononuclear homogeneous metal carbonyl compounds and may eventually serve as homogeneous models for reactions occurring on metal surfaces.^{16,11} Homogeneous mononuclear catalysts are unknown for many of the reactions catalyzed by heterogeneous catalysts, such as the

Fischer-Tropsch reaction¹² or reactions involving carbonhydrogen¹³ or carbon-carbon¹⁴ bond activation. These and similar structure-sensitive¹⁵ reactions may require two or more adjacent metals, a feature present in heterogeneous and homogeneous cluster catalysts but absent in mononuclear homogeneous catalysts. However, certain inherent properties and side reactions of clusters will severely thwart the development of their chemistry. In particular, metal-metal bonds are often weak,16 imparting limited thermal stability to first- and second-row clusters. Photolysis usually results in metal-metal bond cleavage.¹⁷ Homolysis¹⁸ and disproportion¹⁶ of clusters can occur giving rise to mononuclear and other fragments. Although not well studied, oxidation or reduction of clusters^{1b,16} generally gives metal-metal bond cleavage. Clusters are often unstable under high CO pressure,^{1b,1e} cleaving to mononuclear compounds. Added ligands, such as phosphines, may result in ligand substitution or metal-metal bond cleavage.^{1b,1e,10} Indeed, the present study has demonstrated most of these side reactions in this simple binuclear cluster, NaH-

Figure 1. ORTEP plot of the $HFe_2(CO)_8^-$ anion.²⁴

 $Fe_2(CO)_8$. Thus the establishment of the reactive species in a "cluster" reaction is a very important but difficult task.¹⁹

Previously we reported²¹ preliminary synthetic and mechanistic results on the reduction of the olefinic double bond in α,β -unsaturated carbonyl compounds by the binuclear cluster hydride, NaHFe₂(CO)₈. Herein, we report full synthetic and mechanistic details of this reduction reaction. We also describe the NaHFe₂(CO)₈ decomposition mechanisms, its ligand substitution mechanism, and its spectroscopic properties. The reaction of the monoiron hydride, NaHFe(CO)₄, with α,β unsaturated carbonyl compounds has also been briefly examined, so that NaHFe(CO)₄ reductions can be compared and contrasted to those employing NaHFe₂(CO)₈.

Results

Preparation and Physical Properties of NaHFe₂(CO)₈. The binuclear hydride, NaHFe₂(CO)₈ (1), is prepared in a quantitative, two-step, one-flask reaction from Na₂Fe(CO)₄-1.5dioxane (11).²² The parent dianion of NaHFe₂(CO)₈, Na₂Fe₂(CO)₈ (111), is prepared by condensation of Na₂-Fe(CO)₄-1.5dioxane with Fe(CO)₅ (eq 1) in THF.

Na₂Fe(CO)₄-1.5dioxane + Fe(CO)₅

$$\stackrel{\text{II}}{\longrightarrow} \text{Na2Fe2(CO)8 \cdot 4THF + CO} \quad (1)$$

$$\stackrel{\text{III}}{\longrightarrow}$$

The $Na_2Fe_2(CO)_8$ is obtained as an orange precipitate and contains approximately 4 equiv of THF solvate. This solvate can be removed by evacuation with heating to yield $Na_2-Fe_2(CO)_8$ as a bright yellow powder.

Solutions of $NaHFe_2(CO)_8$ are readily obtained by the addition of acetic acid to a stirred slurry of $Na_2Fe_2(CO)_8$ in THF:

$$Na_2Fe_2(CO)_8 + HOAc \xrightarrow{THF} NaHFe_2(CO)_8 + NaOAc$$
(2)

The sodium acetate formed causes a thickening of the THF solutions. This thickening limits the concentration of THF solutions of NaHFe₂(CO)₈ to about 0.2 M. The NaOAc can be removed by centrifugation, yielding a homogeneous, redbrown solution. The NaOAc does not hinder synthetic reductions, but it was removed for kinetic measurements.

The structure of $(HFe_2(CO)_8)^-$, isolated as the PPN⁺ salt,²³ has been determined by x-ray diffraction by Chin and Bau²⁴ (Figure 1). The structure shows two bridging carbonyls and a bridging hydride. The bridging hydride was located using low angle data. The iron-iron bond distance in HFe₂(CO)₈⁻, 2.521 (1) Å, is considerably shorter than the iron-iron single bond²⁵ in Fe₂(CO)₈²⁻ of 2.787 (2) Å. If a bridging carbonyl is substituted for the bridging hydride in HFe₂(CO)₈⁻, isostructural

Figure 2. Molar conductance, Λ , vs. NaHFe₂(CO)₈ concentration (open circles) or (Na⁺-crown) (HFe₂(CO)₈⁻) concentration (open squares) in THF.

 $Fe_2(CO)_9$ is obtained which contains an iron-iron bond²⁶ of 2.523 (1) Å. The hydride in NaHFe₂(CO)₈ exhibits a ¹H NMR singlet at +8.47 ppm (upfield from Me₄Si) at 33 °C. The chemical shift of the hydride resonance is a function of temperature. It varies in an approximately linear fashion with temperature, shifting to 6.12 ppm (upfield from Me₄Si) at -66 °C. The proton-decoupled ¹³C NMR of NaHFe₂(CO)₈ in THF shows a singlet at 223.8 ppm (downfield from Me₄Si) at approximately 25 °C. Even at -70 °C in THF, NaHFe₂(CO)₈ exhibits only a single ¹³C CO resonance. Since bridging carbonyl bands are observed in the IR of $NaHFe_2(CO)_8$ in THF (vide infra), these ¹³C NMR results require that bridgingto-terminal carbonyl exchange be rapid even at -70 °C. Without proton decoupling, the CO ¹³C NMR resonance (226.8 ppm downfield from Me₄Si at -70 °C) is split by the hydride into a doublet, $J_{^{13}C-H} = 5.5$ Hz. This rules out rapid intermolecular CO exchange at -70 °C.

Infrared bands for NaHFe₂(CO)₈ in THF were observed at 1987 (s), 1940 (s), 1880 (s), 1802 (sh), 1770 (m), and 1730 cm⁻¹ (w). The 1770- and 1730-cm⁻¹ absorptions are in a range typical of bridging carbonyls. The 1730-cm⁻¹ peak arises from ion-pairing effects (vide infra).

Ion Pairing Studies. The molar conductance, Λ , vs. [NaH-Fe₂(CO)₈] curve shows a minimum (Figure 2), characteristic²⁷ of systems that form triple ions (e.g., [Na⁺(HFe₂(CO)₈⁻)-Na⁺]⁺ and [HFe₂(CO)₈⁻(Na⁺)HFe₂(CO)₈⁻]⁻) and higher ion-ion aggregates as well as ion pairs and dissociated ions. We have observed similar behavior for NaHFe(CO)₄²⁸ and NaRFe(CO)₄^{21b,29} in THF while others have observed this behavior for NaCo(CO)₄³⁰ and (Mn(CO)₅⁻)³¹ salts in THF. This Λ vs. concentration conductance behavior can be analyzed²⁷ in terms of the following two equilibria for ion-pair dissociation, $K_{\rm TD}$ (eq 4a and 4b).

$$NaHFe_2(CO)_8 \stackrel{K_D}{\longleftrightarrow} Na^+ + HFe_2(CO)_8^-$$
(3)

 $[Na^{+}(HFe_{2}(CO)_{8}^{-})Na^{+}]^{+}$

$$\stackrel{K_{\rm TD}}{\longleftrightarrow} \rm Na^+ + \rm NaHFe_2(\rm CO)_8 \quad (4a)$$

$$[HFe_{2}(CO)_{8}^{-}(Na^{+})HFe_{2}(CO)_{8}^{-}]^{-}$$

$$\stackrel{K_{TD}}{\longleftrightarrow}HFe_{2}(CO)_{8}^{-} + NaHFe_{2}(CO)_{8} \quad (4b)$$

Analysis of the Λ vs. [NaHFe₂(CO)₈] data using eq 3 and 4 gives order of magnitude K_D and K_{TD} values for NaH-

Figure 3. Calculated concentrations of tight-ion pairs (long dashes), triple ions (short dashes), and dissociated ions (solid line) as a function of the initial NaHFe₂(CO)₈ concentration in THF using eq 3 and 4 and $K_D = 7 \times 10^{-5}$ M; $K_{TD} = 3 \times 10^{-3}$ M.

 $Fe_2(CO)_8$ in THF of ${}^{32}K_D = 7 \times 10^{-5}$ M and $K_{TD} = 3 \times 10^{-3}$ M. The addition of 1 equiv of dicyclohexyl-18-crown-6/ $NaHFe_2(CO)_8$ increases the total conductance, but only by \leq 37% in the NaHFe₂(CO)₈ concentration range of 10⁻¹-10⁻³ M. Analysis of the Λ vs. [(Na⁺-crown)-(HFe₂(CO)₈⁻) curve yields order of magnitude K_{TD}' and K_{D}' values for [(Na⁺crown)(HFe₂(CO)₈⁻)] in THF of $K_D' = 2 \times 10^{-4}$ M and $K_{TD'}$ = 4×10^{-3} M. Further support for the validity of these K_D and $K_{\rm TD}$ values is gained by the following observation. The metal carbonyl monoanions^{29a} NaRFe(CO)₄ and³¹ M⁺(Mn(CO)₅⁻) $(M^+ = Li^+, Na^+, Na^+-15$ -crown-5, and $Na^+-5HMPA$) all show K_D and K_{TD} values in the range 10^{-5} - 10^{-4} and 10^{-3} - 10^{-2} , respectively, in THF. Using eq 3 and 4 and the K_D and K_{TD} values for NaHFe₂(CO)₈ in THF, the concentrations of triple ions, ion pairs and dissociated ions were calculated for the simultaneous equilibria presented in eq 3 and 4 as a function of the initial $[NaHFe_2(CO)_8]$. The results, Figure 3, show that below $\sim 10^{-4}$ M [NaHFe₂(CO)₈], dissociated ions predominate while above 10⁻¹ M ion pairs and triple ions predominate.

The Na⁺ cation was found to be ion paired with one of the bridging carbonyls in $HFe_2(CO)_8^-$, giving rise to the 1730 cm^{-1} peak in the IR. Figure 4 shows that titration of a solution of NaHFe₂(CO)₈ with dicyclohexyl-18-crown-6 crown ether leads to a linear decrease in the absorbance of the 1730-cm⁻¹ IR band with zero absorbance (within experimental error) at 1 equiv crown ether/NaHFe₂(CO)₈. The 1770-cm⁻¹ band, which increased in absorbance concurrently with this decrease, has been tentatively assigned to bridging carbonyl(s) that are not ion paired to Na⁺. Replacement of the Na⁺ counterion by Li⁺ shifts the 1730-cm⁻¹ band to 1680 cm⁻¹. In the $[(Ph_3P)_2N]^+$ salt, the 1730-cm⁻¹ band is absent, and has presumably been replaced by a higher frequency band which is buried under the other carbonyl bands. It is well known that Lewis acids prefer the better π -acid bridging vs. terminal carbonyls.33

Figure 5 shows that successive additions of dicyclohexyl-18-crown-6 shift the hydride ¹H NMR singlet of NaH-Fe₂(CO)₈ upfield in linear fashion, with a sharp break point at 1 equiv of crown ether/NaHFe₂(CO)₈. Consistent with other studies,^{29,31} the IR and conductivity

Consistent with other studies,^{29,31} the IR and conductivity ion pairing studies indicate that crown ether converts a mixture of tight and solvent-separated ion pairs into solvent-separated $(Na^+:S:HFe_2(CO)_8^-)$ without dramatically increasing the amount of dissociated species, $HFe_2(CO)_8^- + Na^+$. These

Figure 4. Crown ether titration of Na⁺ from the bridging carbonyl (1730 cm⁻¹) of $HFe_2(CO)_8^-$ in THF.

Figure 5. Variation of the hydride chemical shift (parts per million relative to Me_4Si) upon complexation of Na^+ from $NaHFe_2(CO)_8$ with crown ether in THF.

results emphasize the well-known need in ion-pairing studies to use a variety of physical techniques.³⁴ For example, although IR spectroscopy "sees" solvent-separated ion pairs as identical with dissociated ions,^{34b} conductivity "sees" them as identical with tight ion pairs.

Synthetic Reductions Using NaHFe2(CO)8. Solutions of NaHFe₂(CO)₈ and HOAc in THF reduce the olefinic bond in α . β -unsaturated carbonyl compounds in high yield (Table 1). The double bonds in unsaturated esters, ketones, aldehydes, nitriles, amides, and lactones were all reduced without concurrent carbonyl reductions. Epoxides are tolerated by the reagent alone (entries 16 and 17) or by the reagent actively reducing ethyl crotonate (15), demonstrating the mild conditions of these reductions. Carvone is reduced without isomerization or concurrent reduction of the isopropenyl group (3). $\Delta^{1,9}$ -2-Octalone is reduced to 2-decalone with a cis:trans ratio of 4:1 (6). Testosterone is reduced with a cis:trans ratio of 10:1, although this yield and that of other bulky substrates was poor (18). Except for exceptionally active substrates like dimethyl maleate and mesityl oxide (1 and 5, respectively), 2 or more equiv of $NaHFe_2(CO)_8$ is required to reduce 1 equiv of substrate. Compared to acetic acid, the weak, insoluble acid, NH₄Cl, was found to increase yields, while the stronger acid Cl₃CCO₂H was found to decrease yields (7, 8, and 9, respectively). The initially puzzling NaHFe₂(CO)₈/substrate stoichiometry and the role of acid are now understood in detail and will be discussed in the mechanisms section.

In an effort to improve yields, it was found that faster, more

Entry	Substrate	Product	Yielda	Mol substrate: NaHFe ₂ (CO) ₈ :HOAc	Time, h
1	O MeO OMe	MeO OMe	100	1/1/1	0.01
2		⊖_o	100	1/1.3/2.7	0,1
3		~~~~	76 (35) ^b	1/5/5	20
4	∽_°		97 (85)	1/2.5/2.5	1
5		, î	87	1/1.2/1.2	0.25
6			45 c	1/2/2	2
7	OF	OF	55	1/2/2	20
8	OEt	OtoEt	92 <i>d</i>	1/2.2/2.2	20
9	OEt	OEt	5 <i>e</i>	1/2/2	20
10	OEt	OEt	92	1/2.1/2.1	3
11	Ļ.	Ļ.	90 (76)	1/2.1/2.1	0.5
12	С н	С Ц н	90	1/2/2	0.5
13	CN CN		96	1/2/2	3
14			(50)	1/2/2	8
15			96 + 100	1/2.2/2.2	3
16	$\bigcirc \circ$	$\bigcirc \circ$	95	1/2/2	70
17	Q to	\bigcirc	70	1/2/2	70
18	OH O	OPH OH	<10 <i>f</i>	1/1.15/1.15	

^aDetermined by VPC using internal standards. Numbers in parentheses correspond to isolated yields. ^bCis 1,4:trans 1,4 ratio of 1:3.3 determined by ¹H NMR. ^cCis to trans ratio 80:20 determined by GLC. ^dNH₄Cl used with Na₂Fe₂(CO)₈ instead of HOAc. ^eCl₃CCO₂H used instead of HOAc. ^fCis to trans ratio 10:1 determined by GLC.

effective reducing solutions were obtained by treating α,β unsaturated carbonyl compounds with a heterogeneous slurry of Na₂Fe(CO)₄-1.5dioxane, Fe(CO)₅, and HOAc (Table II). Carbon monoxide evolution is not observed from Na₂-Fe(CO)₄-1.5dioxane and Fe(CO)₅ in dioxane, which is not surprising owing to the decreased nucleophilicity of Na₂-Fe(CO)₄ in dioxane.^{21b,35} The addition of Fe(CO)₅ does increase yields however (5, 6, 2, and 3). Under these conditions in dioxane, ethyl cinnamate is reduced to 77% in 0.5 h (5), in contrast to 50% in 20 h in THF. $\Delta^{1,9}$ -2-Octalone (2) can be reduced quantitatively with a higher cis:trans ratio (87:13) than that observed in THF (80:20). However, some selectivity is lost under these conditions, as demonstrated by the reduction of aldehydes (9). As in reductions with NaHFe₂(CO)₈ in THF, weak acids like NH₄Cl increase the yields (5 and 7).

Reaction Stoichiometry in THF. The synthetic studies

Table II. Reductions in 1,4-Dioxa	ne
-----------------------------------	----

Entry	Substrate	Product	Yielda	Mole ratios substrate:Na ₂ Fe(CO) ₄ : Fe(CO) ₅ :HOAc	Time, h
1	, Ů	, Ļ	87	1/6/6/12	10
2			99 (91) ^b	1/6/6/12	16
3			93 <i>c</i>	1/6/0/12	22
4		0	40 <i>d</i>	1/6/6/12	16
5	OEt	OEt	77	1/1/1/2	0.5
6	OF	OF OEt	58	1/1/0/2	1.5
7	OEt	OEt	100 <i>e</i>	1/1.15/0/3.1	24
8		CN CN	85	1/2/2/4	2
9	→ → → H	CH ₂ OH	46	1/1.15/1.15/2.3	3

^aDetermined by GLC using internal standards. Numbers in parentheses correspond to isolated yields, ^bCis to trans ratio 87:13 determined by GLC. Cis to trans ratio 85:15 determined by GLC. d Remaining 60% is starting material. NH4Cl was used instead of glacial acetic acid.

demonstrated that in these reductions NaHFe₂(CO)₈ is required in a molar ratio of NaHFe₂(CO)₈/ α , β -unsaturated carbonyl compound greater than one. The following evidence, obtained from a combination of GLC, NMR, IR, and product isolation studies, supports the stoichiometry presented in eq. 5 for reductions by NaHFe₂(CO)₈ with HOAc present in THF:

$$2NaHFe_{2}(CO)_{8} + trans-CH_{3}CH=CHCO_{2}Et + HOAc$$

$$IV$$

$$\underbrace{THF}_{25.0 \circ C} CH_{3}CH_{2}CH_{2}CO_{2}Et$$

$$V$$

$$+ NaHFe_{3}(CO)_{11} + Fe(CO)_{5} + (NaOAc) \quad (5)$$

For reductions with trans-CH₃CH=CHCO₂Et in excess, the amount of reduced product, CH₃CH₂CH₂CO₂Et, was 50% by GLC (based on NaHFe₂(CO)₈). Furthermore, within 15% error,³⁶ the stoichiometry shown in eq 5 was demonstrated using 100-MHz ¹H NMR.

In the absence of HOAc, the mononuclear hydride NaH-Fe(CO)₄ was previously observed^{21b,37} to add irreversibly and

$$NaDFe(CO)_{4}$$

$$CH_{2} = CHCO_{2}Et$$

$$\begin{array}{c} 25 \ ^{\circ}C \\ 2.5 \ ^{\circ} \downarrow \ ^{THF} \end{array}$$

$$Na^{*} \begin{bmatrix} CH_{2}(D)CHCO_{2}Et \\ I \\ Fe(CO)_{4} \end{bmatrix} \xrightarrow{H^{*}} CH_{2}(D)CH_{2}CO_{2}Et$$

$$VI \qquad (6)$$

isolated as PPN⁺ salt. 54% vield

regiospecifically to ethyl acrylate giving an isolable alkyl iron product, VI, fully characterized by IR, NMR, and elemental analysis. This product rapidly gave ethyl propionate when treated with HOAc (eq 6). The intermediate alkyl iron product, VII, was also prepared independently^{37a} by oxidative addition of CH₃CH(OTs)CO₂Et to Na₂Fe(CO)₄ and isolated as its PPN⁺ salt (eq 7).

 $Na_2Fe(CO)_4 + CH_3CH(OTS)CO_2Et$

$$\frac{1. \text{ THF, -40 to 25 °C}}{2. \text{ PPN+CI}} [CH_3CH(Fe(CO)_4)CO_2Et]^- - PPN^+ VII (31\% \text{ yield}) (7)$$

When NaHFe₂(CO)₈ reacts with trans-CH₃CH= CHCO₂Et in THF without HOAc (Table V, entry 6), the primary product is the monoiron alkyl, VIII. The product was identified by its ¹³C and 100-MHz ¹H spectra (Tables III and IV, respectively) which are identical with those of authentic VII prepared from NaHFe(CO)₄ and trans-CH₃CH= CHCO₂Et (eq 6). Addition of HOAc to the NMR sample tube converts all VII to CH₃CH₂CH₂CO₂Et in <1 min. The stoichiometry for the reaction of trans-CH3CH=CHCO2Et and NaHFe₂(CO)₈ in THF (no HOAc), established using a combination of GLC and NMR, is complex but appears to be that presented in eq 8.

$$3NaHFe_{2}(CO)_{8} + 2 trans-CH_{3}CH = CHCO_{2}Et$$

$$\xrightarrow{THF}_{25.0 \text{ °C}} 2[Na^{+}[CH_{3}CH(Fe(CO)_{4})CO_{2}Et]^{-}]$$

$$+ \sim 1.0NaHFe_{3}(CO)_{11} + \sim 1.0Fe(CO)_{5} \quad (8)$$

Some Na₂Fe₃(CO)₁₁ was also observed.³⁸ Again no Fe₃(CO)₁₂ was detectable by UV-visible spectroscopy.

Kinetic Studies in THF, Central to the kinetic results is the

Figure 6. Representative GLC pseudo-first-order kinetic plot over 87% reaction for the reduction of *trans*-CH₃CH=CHCO₂Et (in excess) by NaHFe₂(CO)₈ and HOAc (in excess). P_{∞} and P_1 are [ethyl butyrate] at completion and time = t, respectively.

Figure 7. Representative GLC pseudo-first-order kinetic plot over 70% reaction for the reduction of *trans*-CH₃CH=CHCO₂Et by NaH-Fe₂(CO)₈ (in excess) and HOAc (in excess, 0.088 M). R_0 and $R_1 = [trans$ -CH₃CH=CHCO₂Et] initially and at time = t, respectively.

method used to follow these reactions. trans-Ethyl crotonate was chosen as a model α,β -unsaturated carbonyl substrate since it is cleanly reduced in 100% yield (with excess NaH-Fe₂(CO)₈) in a convenient length of time, about 2-3 h. Since dimethyl maleate is reduced at least 50 times faster than trans-ethyl crotonate (Table VII, entries 1 and 6), the reduction of trans-ethyl crotonate and slower substrates could be stopped (quenched) by the addition of excess dimethyl maleate and HOAc. The reactants (e.g., trans-ethyl crotonate) and products (e.g., ethyl butyrate) could then be monitored simultaneously as a function of time by GLC (eq 9).

$$NaHFe_{2}(CO)_{8} + trans-CH_{3}CH = CHCO_{2}Et$$

$$\xrightarrow{1. THF} CH_{3}CH_{2}CH_{2}CO_{2}Et$$

$$\xrightarrow{excess dimethyl maleate)} + CH_{3}CH = CHCO_{2}Et (analyzed by GLC) (9)$$

These kinetic results, performed with rigorous exclusion of oxygen and water using homogeneous, centrifuged NaH- $Fe_2(CO)_8$ solutions (no NaOAc present), are presented in Table V. A representative kinetic plot for reactions pseudo-first-order (with *trans*-ethyl crotonate and HOAc in excess) is presented in Figure 6, while a representative plot for reactions with NaHFe₂(CO)₈ in excess and 0.088 M HOAc is

Table III. ¹H NMR Data of Na⁺[CH₃CH₂CH(Fe(CO)₄)CO₂Et]⁻ Formed Either from NaHFe₂(CO)₈ and Ethyl Crotonate or of That Formed from NaHFe(CO)₄ and *trans*-Ethyl Crotonate

Chemical shift ^a	Assign- ment ^b
0.80 (t, J = 6.8 Hz)	H-6
$1.18 (t, J = 7.3 \pm 0.7 \text{ Hz})^c$	H-1
1.96-2.38 (multiplet, major peaks at 2.24, 2.28, 2.35, 2.38)	H-2, H-3 ^d
3.96 (q, J = 7.0 Hz)	H-5

^{*a*} In parts per million, benzene (7.266 ppm) used as a standard (downfield = positive). ^{*b*} [C¹H₃C²H₂C³H(Fe(CO)₄)C⁴O₂-C⁵H₂C⁶H₃]⁻. ^{*c*} Overlap with residual ethyl crotonate peaks prevents accurate measure of the coupling constant. ^{*d*} Assignment of these peaks was prevented owing to the proximity of residual THF-*d*₈ resonances.

Table IV. ¹³C NMR Data of Na⁺[CH₃CH₂CH(Fe(CO)₄)CO₂Et]⁻ Formed Either from NaHFe₂(CO)₈ and Ethyl Crotonate or of That Formed from NaHFe(CO)₄ and Ethyl Crotonate

Chemical shift ^a	Rel intensity ^b	Assignment
221.64	0.61	C-7
189.79	0.064	C-4
58.77	1.00	C-5
32.07	0.75	C-3
24.45	0.37	C-2
17.61	0.87	C-1
14.62	0.87	C-6

^{*a*} In parts per million from internal tetramethylsilane (downfield = positive). ^{*b*} Relative intensities were run under identical conditions and are for comparison only. ^{*c*} $[C^{1}H_{3}C^{2}H_{2}C^{3}H(Fe(C^{7}O)_{4})-C^{4}O_{2}C^{5}H_{2}C^{6}H_{3}]^{-}$.

shown in Figure 7. The validity of this GLC kinetic method was checked by monitoring the reduction reaction directly by ¹H NMR in THF- d_8 . Kinetics by ¹H NMR (entries 2 and 6, Table V) gave the same rate constants within experimental error as the GLC kinetic method (5 and footnote d). The kinetic data clearly demonstrate that the reductions of transethyl crotonate by NaHFe₂(CO)₈ are first order in trans-ethyl crotonate (Figure 8) and first order in NaHFe₂(CO)₈ both with HOAc in excess (Figure 9) and without HOAc present (Figure 10). It should be noted that owing to the 2:1 NaH-Fe₂(CO)₈ to trans-CH₃CH=CHCO₂Et stoichiometry of reductions with HOAc present (eq 5), $-d[NaHFe_2(CO)_8]/dt$ = $2(-d[trans-CH_3CH=CHCO_2Et]/dt)$. For this reason the rate constants for reactions run pseudo-first-order with [trans-CH₃CH=CHCO₂Et] in excess must be divided by this statistical factor of 2 in order to be directly comparable to the rate constants run with $NaHFe_2(CO)_8$ in excess. Divisions by this statistical factor of 2 have already been performed wherever required. (See footnote a, Table V.) Although semilog plots were routinely linear over 3 half-lives for reactions with HOAc and trans-ethyl crotonate in excess (Figure 6), plots for reactions with NaHFe2(CO)8 in excess and without HOAc or with ≥0.088 M HOAc deviate from linearity.³⁹ Thus, initial rates have been used for reactions under those conditions which did not give linear semilog plots. The deviations caused by excess HOAc have been studied in some detail, and are due to an acid-dependent NaHFe₂(CO)₈ decomposition path. These results will be presented in the section entitled "Studies of NaHFe₂(CO)₈ Decomposition Mechanisms".

In spite of the initial problems caused by acid-dependent $NaHFe_2(CO)_8$ decomposition, the dependence of these reduction reactions upon [HOAc] has been clearly established. The results, measured with $NaHFe_2(CO)_8$ and HOAc in ex-

		[CH ₃ CH=CHC-			
	$[NaHFe_2(CO)_8],$	$O_2Et],$	[HOAc],	Other exptl	$k_2(\text{obsd})^a \times 10^3$,
Entry	M	M	M	information	M ⁻¹ s ⁻¹
	_	Reactions Ru	n Pseudo-Fi	rst-Order with NaHFe2(CO)8 in Excess	
1	0.20, 0.10, ^b and 0.05	0.01	0.088		$1.0 \pm 0.1^{\circ}$
2	0.20	0.20	0.12	Reaction monitored directly by ¹ H NMR in THF- <i>d</i> ₈	~0.9 ^d
3	0.10	0.01	0.088 DOAc	$NaDFe_2(CO)_8$ and DOAc used	$2.4 (k_{\rm D}/k_{\rm H} = 2.4 \pm 0.3)^{e}$
4	0.10	0.01	0.088	0.10 M NaHFe(CO)4	3.3
5	0.20, 0.10, ^f and 0.05	0.01	None		$0.70 \pm 0.05^{\circ}$
6	0.20	0.20	None	Reaction monitored directly by ¹ H NMR in THF- <i>d</i> ₈	0.74 ^g
7	0.10	0.01	None	$NaDFe_2(CO)_8$ used	$2.4 (k_{\rm D}/k_{\rm H} = 3.5 \pm 0.5)^{e}$
8	0.10	0.01	None	0.10 M NaHFe(CO)4 added	~9
		Reactions Run P	seudo-First-	Order with CH ₃ CH=CHCO ₂ Et in Excess	
9	0.01	0.38, 0.20, ^h and 0.10	0.088		$0.65 \pm 0.01^{\circ}$
10	0.01	0.20	0.088	0.10 M Fe(CO) ₅ added	0.79
11	0.01	0.20	0.088	Run pseudo-first-order, $P_{CO} = (1 \text{ atm})$	0.28'
12	0.01	0.10	None		0.45 ^j

Table V, Kinetic Data for trans-CH₃CH=CHCO₂Et Reductions Using NaHFe₂(CO)₈ in THF

^a All data at 25.0 ± 0.1 °C. For reactions with [HOAc] and [NaHFe₂(CO)₈] or [CH₃CH=CHCO₂Et] in excess, k_2 (obsd) = $k_1/[NaH-CHCO_2Et]$ $Fe_2(CO)_8$ or $k_2(obsd) = k_1/[CH_3CH=CHCO_2Et]$, respectively. Also, $k_2(obsd) = k_{2R} + k_{3R}[HOAc]$ (see Figures 11 and 12). $k_2(obsd)$ is the average of the least-squares rate constants for k_2 (reactants) (e.g., monitoring the disappearance of ethyl crotonate) and k_2 (products) (e.g., monitoring the formation of ethyl butyrate) for reactions with [NaHFe2(CO)8] and [HOAc] in excess. For reactions with [HOAc] and $[CH_3CH=CHCO_2Et]$ in excess, $k_2(obsd) = k_2(products)/2$, since the stoichiometry is $2NaHFe_2(CO)_8/1CH_3CH=CHCO_2Et$, and thus $-d[HFe_2(CO)_8]/dt = 2(-d[CH_3CH=CH_2CO_2Et]/dt)$. For reactions with [NaHFe_2(CO)_8] only in excess (no HOAc), initial rates were used to calculate $k_2(\text{obsd})$. ^b See Figure 9. ^c These error limits indicate the reproducibility of three experiments (1 standard deviation). ^d $k_2(\text{obsd})$ (25 ± 2 °C) was calculated from the average initial rates of CH₃CH=CHCO₂Et disappearance and [CH₃CH₂CO₂Et] appearance. The GLC kinetic method gives $k_2(\text{obsd}) = 1.2 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$ at 0.12 M HOAc (see Figure 11). Standard deviation assuming 10% precision in each rate constant. I See Figure 10. r The disappearance of [CH3CH=CHCO2Et] was monitored and the initial reaction rate and initial concentrations were used to calculate k_2 (obsd). ^h See Figure 8. ⁱ There is a concurrent reaction occurring, NaHFe₂(CO)₈ + CO \rightarrow NaHFe(CO)₄ + Fe(CO)5. For conditions with constant [CH3CH=CHCO2Et] and [CO], the first-order rate constant for the appearance of CH₃CH₂CH₂CO₂Et has the following form: k_1 (obsd) = k_2 (CO reaction)[P_{CO}] + $2k_2$ (obsd)[CH₃CH=CHCO₂Et], with k_1 (obsd) = 2.78 × 10⁻⁴ s⁻¹. Since the yield of CH₃CH₂CO₂Et was 39% its usual value, $(100 - 39)/39 = 1.56 = k_2(CO reaction)[P_{CO}]/(2k_2(obsd) + 10^{-4} s^{-1})$. [CH₃CH=CHCO₂Et]). These values give, at 1 atm of CO, k_2 (CO reaction) [P_{CO}] = 1.7 × 10⁻⁴ s⁻¹ and k_2 (obsd) = 2.8 × 10⁻⁴ M⁻¹ s⁻¹. ^J Since the stoichiometry without HOAc present is $3N_{a}HFe_{2}(CO)_{8}/2CH_{3}CH=CHCO_{2}Et$, $k_{2}(obsd) = k_{2}(products)/(3/2)$.

Figure 8. Linear dependence of the pseudo-first-order rate constant upon the concentration of (excess) *trans*-CH₃CH=CHCO₂Et for its reduction to CH₃CH₂CH₂CO₂Et. (The k_1 (obsd) values have not been divided by the statistical factor of 2.)

cess, indicate that these reductions follow an acid-dependent as well as acid-independent path, $k_2(\text{obsd}) = k_{2R} + k_{3R}$. [HOAc] (Figure 11). Least-squares analysis of the data gives (error bars represent one standard deviation) $k_{2R} = 6.2 \pm 0.5 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$; $k_{3R} = 5.3 \pm 0.3 \times 10^{-3} \text{ M}^{-2} \text{ s}^{-1}$. As a check upon these data, the [HOAc] dependence of these reductions

Figure 9. Linear dependence of the pseudo-first-order rate constant upon the concentration of (excess) $NaHFe_2(CO)_8$ with HOAc (0.088 M) present for *trans*-CH₃CH=CHCO₂Et reduction.

was established using *trans*-CH₃CH=CHCO₂Et and HOAc in excess (Figure 12). Again k_2 (obsd) = $k_{2R} + k_{3R}$ [HOAc], with slope = $9.5 \pm 0.4 \times 10^{-3} \text{ M}^{-2} \text{ s}^{-1}$, intercept = $6.6 \pm 0.8 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$. After dividing by the appropriate statistical factor introduced by the reaction stoichiometry (slope/2 and intercept/2), $k_{3R} = 4.7 \pm 0.2 \times 10^{-3} \text{ M}^{-2} \text{ s}^{-1}$ and $k_{2R} = 4.4$

Figure 10. Linear dependence of the initial pseudo-first-order rate constant upon the concentration of (excess) $NaHFe_2(CO)_8$ for *trans*-CH₃CH=CHCO₂Et reduction.

Figure 11. Linear dependence of the initial second-order rate constant upon the concentration of (excess) HOAc for *trans*-CH₃CH=CHCO₂Et reduction with NaHFe₂(CO)₈ in excess.

 $\pm 0.5 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$. The agreement between the two k_3 values is reasonably good ($k_{3R} = 5.3 \pm 0.3 \times 10^{-3} \text{ and } 4.7 \pm 0.2 \times 10^{-3} \text{ M}^{-2} \text{ s}^{-1}$). The k_{2R} values ($k_{2R} = 6.2 \pm 0.5 \text{ and } 3.3 \pm 0.4 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$) differ by more than experimental error. However, some decrease in k_{2R} at lower [NaHFe₂(CO)₈] is expected owing to ion-pairing effects (vide infra).

In order to determine whether reversible iron-iron bond cleavage in NaHFe₂(CO)₈ to give NaHFe(CO)₃ + Fe(CO)₅ or NaHFe(CO)₄ + Fe(CO)₄ is occurring in these reduction reactions, possible inhibition by added Fe(CO)₅ or NaH-Fe(CO)₄ was examined. Added Fe(CO)₅ (0.5 equiv Fe-(CO)₅/NaHFe₂(CO)₈) has no effect on k_2 (obsd) within experimental error (entry 10, Table V). Surprisingly, added NaHFe(CO)₄ *increases* the rate of NaHFe₂(CO)₈ addition to *trans*-ethyl crotonate (no HOAc present) (8). In the presence of HOAc, the NaHFe(CO)₄-induced rate increase is less (4).

The rate of *trans*-ethyl crotonate reduction was measured under 1 atm of CO pressure to see if the equilibrium NaH- $Fe_2(CO)_8 \Longrightarrow NaHFe_2(CO)_7 + CO$ is involved in these reduction reactions. Although the kinetics are complicated owing to a CO-induced decomposition of NaHFe₂(CO)₈, we have obtained a quantitative measure of the CO inhibition of these reduction reactions (see footnote *i*, Table V). We found that 1 atm of CO inhibited the reductions about 2.3-fold (entry 11, Table V), far less than that expected if reversible CO dissociation had been involved in these reduction reactions.

The deuterium isotope effect, the effect of ion pairing, and

Figure 12. Linear dependence of the second-order rate constant upon the concentration of (excess) HOAc with trans-CH₃CH=CHCO₂Et (in excess).

Table VI. Ion-Pairing Effects for^a

М	+[HFe ₂ ($(CO)_8]^- + tra$	ns-CH ₃ CH=CHCO ₂ Et	25.0 °C
Entry ^a	HOAc, M	Cation (M ⁺)	Other exptl information	$k_{2}(\text{obsd}) \\ \times 10^{3}, \\ M^{-1} \\ \text{s}^{-1b}$
1	None	Na ⁺	0.20 M NaBPh ₄ added ^c	0.76
2	None	Li+		0.85
3	None	Na ⁺	4.7% (v/v) NMP/THF added ^d	0.13
4	None	Na ⁺	<pre>l equiv (0.1 M)^e dicyclo- hexyl-18-crown-6 added</pre>	0.22
5	0.088	Na ⁺	0.20 M NaBPh ₄ added ^c	1.0
6	0.088	Li+		1.0
7	0.088	Na ⁺	4.7% (v/v) NMP/THF ^d added	0.38
8	0.088	$[(Ph_3P)_2N]^+$		0.36

^{*a*} All reactions at $[M^+(HFe_2(CO)_8)^-] = 0.10 \text{ M}$, $[CH_3CH=CHCO_2Et] = 0.01 \text{ M}$. ^{*b*} $k_2(obsd) = k_{2R} + k_{3R}[HOAc]$. Initial rates were used to calculate $k_2(obsd)$. ^{*c*} K(dissociation) for NaBPh₄ in THF is $8.5 \times 10^{-5} \text{ M}$: J. Smid and M. Szwarc, J. Phys. Chem., **69**, 608 (1965). Thus a 0.20 M NaBPh₄/THF solution gives $4.1 \times 10^{-3} \text{ M}$ Na⁺ ions. ^{*d*} 4.7% NMP (*N*-methylpyrrolidinone) under these conditions is 5.2 equiv NMP/Na⁺. ^{*e*} A mixture of A and B isomers was used.

relative substrate reactivities have also been examined for reductions using NaHFe₂(CO)₈. An unusual, large inverse k_D/k_H deuterium isotope effect is observed. With no DOAc present and using NaDFe₂(CO)₈, an inverse deuterium isotope effect of $k_D/k_H = 3.5$ was observed (7). The deuterium isotope effect is acid dependent. In the presence of 0.088 M DOAc, $k_D/k_H = 2.4$ (3).

In previous studies, we have shown that the chemistry of $Na_2Fe(CO)_4^{21b,35}$ and $NaRFe(CO)_4^{21b,29}$ is dominated by ion-pairing phenomena. Since conductance studies showed that $NaHFe_2(CO)_8$ can exist in THF as a mixture of dissociated ions, ion pairs, triple ions (eq 3 and 4), and higher aggregrates, the effect of ion pairing in these reduction reactions was examined. The results presented in Table VI show that, as expected, ion pairing is important in reductions by (HFe₂-

Table VII. Substrate Relative Reduction Rates

Entryª	Substrate	$k_2 \text{ (obsd)}, b$ M ⁻¹ s ⁻¹	Rel rates	$E_{1/2}$ redn ^c potential, V vs. SCE
1	OEt	1.0×10^{-3}	1.0	-2.3
2		~2.0 × 10 ⁻⁴	~0.2	-2.2
3	0	>5.0 × 10 ⁻²	>50	-2.07
4		~4.6 × 10 ⁻²	~46 <i>d</i>	-2.0
5	OEt	$\sim 3.0 \times 10^{-4}$	~0.3e	-1.81
6		>5.0 × 10 ⁻²	>50	

^aAll reactions were run at 0.10 M NaHFe₂(CO)₈, 0.01 M substrate, and 0.088 M HOAc at 25.0 °C in THF. ^bFor entries 2 and 5, k_2 (obsd) was calculated from initial rates and initial concentrations. ^cE_{1/2} reduction potentials in DMF; H. O, House, L. E. Huber, and M. J. Umen, J. Am. Chem. Soc., 94, 8471 (1972). The values for entries 2 and 4 were calculated using House's empirical rules. ^dFor NaDFe₂(CO)₈ and DOAc, $k(obsd) \approx 8.2 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}; k_D/k_H \approx$ 1.8. ^eFor NaDFe₂(CO)₈ and DOAc, $k(obsd) \approx 7.5 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}; k_D/k_H \approx 2.5.$

 $(CO)_8)^-$. For example, added cation complexing crown ether (1 equiv of dicyclohexyl-18-crown-6/NaHFe₂(CO)₈) slows the reaction 3.2-fold (entry 4, Table VI). However, these ion-pairing rate effects are much less than those of 10^3-10^4 previously observed for NaRFe(CO)₄ and Na₂Fe(CO)₄ reactions, respectively. The rates of reductions by M⁺[HFe₂(CO)₈]⁻ are also dependent upon the cation, M⁺. The rates decrease in THF for Li⁺ > Na⁺ > PPN⁺.

Relative α,β -unsaturated carbonyl substrate reactivities have also been determined (Table VII). These results show that substitution α or γ to the carbonyl slows these reactions (entries 2, 3, and 4, Table VII), and cis isomers usually react rapidly (3). In general, our synthetic studies of reductions by NaH-Fe₂(CO)₈ show that these reactions are inhibited by sterically bulky substrates. (See, for example, entry 18, Table I.)

Entries 1-5, Table VII, show that there is no obvious correlation of k_2 (obsd) with the $E_{1/2}$ reduction potentials. In the absence of steric effects and if electron transfer were the rate-determining step, one would expect such a correlation.

Deuterium Isotope Labeling and Stereochemical Studies. Since the addition of the monoiron deuteride, $DFe(CO)_4^-$, to CH_2 =CHCO₂Et is regiospecific and irreversible (eq 6), it was of interest to see if reductions using binuclear NaHFe₂(CO)₈ also showed this chemistry. The observation of an inverse isotope effect for NaHFe₂(CO)₈ reductions suggests that NaHFe₂(CO)₈ additions were, however, reversible, since this inverse isotope effect can be quantitatively explained as an equilibrium isotope effect (see the Discussion section).

Additional evidence for reversible addition of $DFe_2(CO)_8^$ is presented in Table VIII, entry 1. Thus, GLC-mass spectral analysis after 60% completion of the reaction of 0.2 M NaDFe₂(CO)₈, 0.09 M DOAc, and 0.05 M PhCH= CHCO₂Et in THF shows that the reduced product contains up to three *but not four* deuterium atoms. The observation of d_3 product requires reversible addition of deuterium to the double bond. Furthermore, this reversibility coupled with the lack of d_4 -containing product requires that this deuterium addition be regiospecific. Examination of the (PhCH₂)⁺ mass Scheme I. Proposed Mechanism to Account for the Low d_1/d_0 Ratio Observed for the Reduction of PhCH=CHCO₂Et by NaDFe₂(CO)₈ and DOAc

spectral fragment shows significant amounts of a d_2 -containing fragment (PhCD₂)⁺, suggesting that the deuterium from NaDFe₂(CO)₈ adds regiospecifically β to the carbonyl in PhCH=CHCO₂Et. Analysis of the unreacted PhCH= CHCO₂Et shows that it contains up to ~25% d_1 but no d_2 , offering further support for the reversibility and regiospecificity of this reaction. Reversibility in the reaction of 0.2 M *trans*-CH₃CH=CHCOEt and 0.2 M NaDFe₂(CO)₈ in THF- d_8 was established by 100-MHz ¹H NMR. During this reaction at 25 °C, the doublet due to the α proton in *trans*-CH₃CH=CHCO₂Et (5.79 ppm, relative to Me₄Si) is replaced by a broad singlet due to the formation of *trans*-CH₃CD= CHCO₂Et.

This reversibility and regiospecificity is not unprecedented. The addition of $HCo(CN)_5^{3-}$ to α,β -unsaturated carbonyl compounds is reversible and regioselective⁴⁰ while $H_2Os_3(CO)_{10}$ additions to α,β -unsaturated carbonyl compounds are also reversible and apparently regiospecific.^{7a}

In order to test the stereospecificity of these reductions, the reduction of 0.05 M 4,4-dimethylcyclohexenone by 0.2 M NaDFe₂(CO)₈ and 0.1 M DOAc in THF was examined (entry 2, Table VIII). Analysis by GLC-MS of the reduced product shows that it contains up to two, but not three, deuteriums. This result, coupled with the knowledge that these $DFe_2(CO)_8^$ additions are reversible, requires that these reductions are highly stereoselective and probably stereospecific. (The reductions of 4,4-dimethylcyclohexenone also show an inverse isotope effect, $k_{\rm D}/k_{\rm H} \sim 1.8$ (Table VII, entry 4) which will be interpreted later, in detail, as evidence for this reversibility.) However, the overall stereochemistry of reduction, either net cis or trans addition of H_2 , is not known. These results suggest that the formation of d_3 -containing reduced product in acyclic α,β -unsaturated substrates, such as PhCH=CH- CO_2Et , proceeds via trans \Rightarrow cis isomerization, as outlined in Scheme I.

Consistent with this scheme is the observation of significant amounts of PhCH=CHCO₂Et- d_0 and PhCHDCHDCO₂-Et- d_2 in the reaction of NaDFe₂(CO)₈ and PhCH= CHCO₂Et. Naively, for a rapid reversible addition of DFe₂(CO)₈⁻, one would expect only PhCD=CHCO₂Et- d_1 and thus only PhCD₂CHDCO₂Et- d_3 . However, the apparent stereospecificity of this addition (and thus of the elimination by microscopic reversibility) requires the formation of PhCD=CHCO₂Et- d_1 via *cis*-PhCD=CHCO₂Et, and thus the d_1/d_0 ratio reflects the low equilibrium ratio of cis/trans. Scheme I predicts that *cis*-RCH=CHCO₂R' should be rapidly rearranged to *trans*-RCD=CHCO₂R' by NaDFe₂(CO)₈. Unfortunately, an alternate mechanism for cis to trans isomerization exists so that the hypothesis cannot be tested. Entry

Table VIII. Isotopic Labeling Studies Using NaDFe₂(CO)₈ and CH₃CO₂D

Entry	Recovered reactant	Fragment	Mol wt	$d_0/d_1/d_2/d_3^a$	Product		Mol wt	$d_1/d_2/d_3/d_4^a$
1	PhCH=CHCO ₂ Et ^b	(Parent) ⁺ ,	176	10.0/3.3/0.0 (10.0/1.0/0.0)	PhCH ₂ CH ₂ CO ₂ Et	(Parent) ⁺ ,	178	5.5/10.0/1.2/0.0 (4.2/10.0/1.7/0.0)
			148	10.0/2.4/0.0		$(PhCH_2CH_2CO)^+$	133	6.3/10.0/1.9/0.0
		(men—eneo ₂)	140	(10.0/1.5/0.0)		(PhCH₂)⁺	91	(d_0) 2.1/10.0/0.84/0.0 (2.5/10.0/0.56/0.0)
2				(Not determined)	$\overset{\circ}{\searrow}$	(Parent) ⁺ ·	126	$\binom{(d_1)}{2.8/10.0/0.0}$
3				(Not determined)	OEt	(Parent) ⁺ ·	114	<i>d</i> ₀ / <i>d</i> ₁ 10.0/0.0

^aRatios were determined by GLC-mass spectrometry. Raw relative abundances were corrected for the amount of M + 1 peak observed in the GLC-mass spectrum of authentic materials. The largest peak has been normalized to 10.0. ^bMass spectral data for the reaction of 0.1 M each of NaDFe₂(CO)₈ and PhCH=CHCO₂Et. After 86% reaction, the mixture was quenched with excess DOAc. The numbers in parentheses are for a repeat reaction of 0.2 M NaDFe₂(CO)₈, 0.09 M DOAc and 0.05 M PhCH=CHCO₂Et, which was stopped after 60% reaction. ^c For the reaction at 100% conversion of 0.2 M NaDFe₂(CO)₈, 0.1 M DOAc, and 0.5 M 4,4-dimethylcyclohexenone. ^d For the reaction of 0.2 M NaDFe₂(CO)₈, 0.08 M DOAc, and 0.04 M cis-CH₃CH=CHCO₂Et. After 1.2 min the reaction was quenched with dimethyl maleate and DOAc, and GLC analysis showed that the cis isomer had been converted to the equilibrium mixture of ~90% trans plus ~10% cis.

Figure 13. The concentration of NaHFe₂(CO)₈ vs. time for the reaction NaHFe₂(CO)₈ + CO \rightarrow NaHFe(CO)₄ + Fe(CO)₅ in the presence of 0.177 M HOAc under a constant CO pressure, $P_{CO} = 1$ atm. The reaction was monitored by volumetric CO uptake (open circles). The solid line is the calculated [NaHFe₂(CO)₈] vs. time obtained by numerical integration (fourth order Runge-Kutta) of concurrent decomposition and CO substitution pathways. The dashed line represents the measured rate of CO (gas) \rightarrow CO (solution) under these conditions.

3, Table VIII shows that, although cis-CH₃CH=CHCO₂Et is rearranged to ~90% trans-CH₃CH=CHCO₂Et (plus ~10% cis-CH₃CH=CHCO₂Et) \geq 100 times faster (\leq 1.2 min) than the rate of its reduction, the resulting product contains no trans-CH₃CD=CHCO₂Et- d_1 . The fact that a 0.1 M NaHFe₂(CO)₈ solution isomerized cis-hex-3-ene to transhex-3-ene within 20 min, although such unactivated olefins are not reduced, demonstrates this alternate cis to trans isomerization mechanism. Also, rearrangement to 1- or 2-hexenes was not observed. Since metal radicals in NaHFe₂(CO)₈ solutions have been identified by ESR (vide infra), this cis to trans isomerization may involve these radicals.

In addition to this rapid cis-trans isomerization, we have uncovered an additional side reaction catalyzed by NaH- $Fe_2(CO)_8$ solutions which is also quite possibly radical in nature. Analysis by GLC-MS at 60% completion (DOAc and dimethyl maleate quench) of the reaction of 0.2 M NaD-Fe₂(CO)₈, 0.10 M DOAc, and 0.05 M *trans*-CH₃CH= CHCO₂Et shows that up to three deuteriums are incorporated into the unreduced *trans*-CH₃CH=CHCO₂Et while up to five deuteriums are incorporated into CH₃CH₂CH₂CO₂Et. Analysis of the m/e 71 (CH₃CH₂CH₂CO)⁺ fragment shows that no deuterium was incorporated into the ethyl ester, but that the activated allylic methyl group must have incorporated deuterium.

Finally, attempts to determine whether reductions by NaHFe₂(CO)₈ and HOAc proceed with overall cis or trans addition by using dimethyl maleate (*cis*-CH₃O₂CH=CHCO₂CH₃) and dimethyl fumarate (*trans*-CH₃-O₂CH=CHCO₂CH₃) have failed.⁴¹

Reaction of NaHFe₂(CO)₈ with CO, ¹³CO, and PPh₃. As observed with many cluster compounds,^{1b,1e} added CO cleaves the metal-metal bond in NaHFe₂(CO)₈. The products are shown in the equation

$$NaHFe_{2}(CO)_{8} + CO \xrightarrow{k_{CO}} NaHFe(CO)_{4} + Fe(CO)_{5}$$
(10)

The addition of CO turns the red-brown NaHFe₂(CO)₈ solutions to a light yellow color characteristic of NaHFe(CO)₄ in THF; 1.0 ± 0.1 equiv of CO/NaHFe₂(CO)₈ was consumed and the only products observable by IR were NaHFe(CO)₄ and Fe(CO)₅. In measuring the [CO] dependence of the reduction of ethyl crotonate by $NaHFe_2(CO)_8$, the rate constant for CO cleavage of NaHFe₂(CO)₈ was also determined, k_{CO} (25.0 °C, constant CO pressure, $P_{CO} = 1$ atm, 0.088 M HOAc, THF) = 1.7×10^{-4} s⁻¹ (Table V, entry 11 and footnote i). This value for k_{CO} was independently verified by monitoring the uptake of CO volumetrically. The observed data, Figure 13, are reproduced reasonably well using the above value of k_{CO} and the known rates of NaHFe₂(CO)₈ decomposition. IR analysis of the product mixture showed that the known decomposition product NaHFe₃(CO)₁₁ (as well as $NaHFe(CO)_4$) was present, indicating that significant NaHFe₂(CO)₈ decomposition had occurred. It should be noted that the initial rate of the CO reaction, eq 10 under these conditions is about the same as the rate of $CO(gas) \rightarrow CO$ -(solution), Figure 13.43 Thus the concentration of free CO in these solutions is probably small.

Figure 14. Linear dependence of the initial rate upon the initial PPh₃ concentration for the reaction of NaHFe₂(CO)₈ and PPh₃ in THF with the initial [NaHFe₂(CO)₈] constant.

In order to determine if a CO dissociative pathway, eq 11, was fast enough to be important in reductions using NaH-Fe₂(CO)₈, the exchange of ¹³CO with NaHFe₂(CO)₈ was studied.

$$NaHFe_2(CO)_8 \xrightarrow[k_{-1}]{k_{-1}} NaHFe_2(CO)_7 + CO \qquad (11)$$

Bubbling 20% ¹³CO (1 atm, 25.0 °C, no HOAc present) through a 0.2 M NaHFe₂(CO)₈ solution for 3.0 min gave no detectable ¹³CO incorporation by ¹³C NMR. A ¹³CO incorporation of ≥ 1.1 % would have been detected.⁴⁴ This ¹³CO study requires the important result that $k_1 \leq 6 \times 10^{-5} \, \text{s}^{-1}$. The short, 3.0-min reaction time was required to prevent ¹³CO cleavage of the iron-iron bond in NaHFe₂(CO)₈ (e.g., 10), which hampers the ¹³C NMR analysis.⁴⁵ Under these conditions, only 2.8% of the CO-induced NaHFe₂(CO)₈ cleavage should have occurred. The presence of 1 equiv of *trans*-CH₃CH=CHCO₂Et substrate did not catalyze the exchange of CO. No ¹³CO incorporation was observed by ¹³C NMR after 3.0 min of bubbling 20% ¹³CO (1 atm, 25 °C) through a 0.2 M NaHFe₂(CO)₈/THF solution (no HOAc) that contained 0.2 M *trans*-CH₃CH=CHCO₂Et.

In order to study the ligand substitution mechanism of NaHFe₂(CO)₈ independent of the other processes involved in these reductions, the reaction of NaHFe₂(CO)₈ with ligands which cannot undergo the migratory insertion reaction, such as phosphines, was examined. The addition of PPh₃ to NaH-Fe₂(CO)₈ in THF results in iron-iron bond cleavage. The reaction of 2 equiv of PPh₃/NaHFe₂(CO)₈ in THF at 25.0 °C gives significant amounts of NaHFe(CO)₄, Fe(CO)₃L (L = PPh₃). The reaction stoichiometry, precise to $\pm 15\%$, is shown in eq 12.

$$1NaHFe_{2}(CO)_{8} + 1L \\ (L = PPh_{3}) \\ \xrightarrow{THF} \\ 25.0 \ ^{\circ}C \qquad [1NaHFe(CO)_{4}] + 0.4Fe(CO)_{5} \\ + 0.4Fe(CO)_{3}L_{2} \\ \downarrow H^{*}, L \qquad + 0.2Fe(CO)_{4}L \\ H_{2} + Fe(CO)_{4}L \qquad (12)$$

With 1 equiv of HOAc/NaHFe₂(CO)₈ present, the reaction of 2 equiv of PPh₃/NaHFe₂(CO)₈ gives a mixture of Fe(CO)₅, Fe(CO)₄L, and Fe(CO)₃L₂ (eq 12). However, the formation of more Fe(CO)₄L occurs in a secondary reaction. In the presence of HOAc, NaHFe(CO)₄ and PPh₃ react to give H₂ and Fe(CO)₄L. By monitoring the disappearance of the IR

Figure 15. Linear dependence of the initial rate upon the initial NaH- $Fe_2(CO)_8$ concentration for the reaction of NaHFe₂(CO)₈ and PPh₃ in THF with the initial [PPh₃] constant.

Figure 16. Linear dependence of the pseudo-first-order rate constant for $NaHFe_2(CO)_8$ decomposition upon the concentration of (excess) HOAc.

bridging carbonyl band of NaHFe₂(CO)₈ at 1770 cm⁻¹, kinetic data on the reaction of NaHFe₂(CO)₈ and PPh₃ have been obtained (Table 1X). These data demonstrate that the disappearance of NaHFe₂(CO)₈ is overall second order, first order each in [PPh₃] (Figure 14) and [NaHFe₂(CO)₈] (Figure 15).

The observation of a second-order rate law and no isotope effect within experimental error, $k_{\rm H}/k_{\rm D} = 0.9 \pm 0.2$ (Table IX, entry 2, footnote f), for this reaction for important results which bear heavily upon possible mechanisms of reductions by NaHFe₂(CO)₈.

Further kinetic data show that this PPh₃ reaction is unaffected by added HOAc (Table IX, entry 6), but is slowed twoand threefold by adding 1 equiv of NaHFe(CO)₄ or crown ether/NaHFe₂(CO)₈, respectively (4 and 5). If the more nucleophilic phosphine P(Ph)(CH₃)₂ is used in place of PPh₃, the reaction is *at least* 30 times faster, $k_2 > 10^{-1} \text{ M}^{-1} \text{ s}^{-1}$.

Studies of NaHFe₂(CO)₈ Decomposition Mechanisms. In the synthetic reductions using NaHFe₂(CO)₈, it was observed that weak acids like NH₄Cl (Table 1, entry 8) often give higher yields of reduced carbonyl compound. The following data show that NaHFe₂(CO)₈ decomposes in the presence of acid. Monitoring the disappearance of the hydride resonance by ¹H NMR, the results summarized in Figure 16 show that NaH-Fe₂(CO)₈ decomposes by both a first-order acid-independent as well as a second-order acid-dependent pathway, k_1 (de-

Table IX. Kinetic Data for the Reaction of NaHFe₂(CO)₈ with PPh₃ (THF, 25.0 °C)

Entry	$[NaHFe_2(CO)_8] \times 10^2, M$	[PPh ₃], M	Other reagents	$k_1 \times 10^{3,a,b}$ s ⁻¹	$k_2 \times 10^{3,c}$ M ⁻¹ s ⁻¹
1	2.0, 4.0, ^d and 8.0	0.40			2.7
2	8.0	0.40, ^{e,f} 0.20			2.7
3	2.0	0.10 ^e		0.32	3.2
4	8.0	0.20	0.08 M NaHFe(CO)₄ added	0.22	1.0
5	8.0	0.40	0.08 M dicyclohexyl-18-crown-6 added	0.46	1.4
6	8.0	0.40	0.088 M HOAc added	1.1	2.9

^a k_1 = initial rate/initial [NaHFe₂(CO)₈]. The disappearance of NaHFe₂(CO)₈ was monitored by following the decrease in the IR absorbance of the bridging CO band at 1770 cm⁻¹. ^b For reactions with PPh₃ in excess, linear ln [NaHFe₂(CO)₈] vs. time plots were usually obtained. For reactions with <4 equiv PPh₃/Na₂Fe(CO)₈, initial rates were used. (Linear [NaHFe₂(CO)₈]^{1/2} vs. time plots were obtained.) ^c k_2 = k_1 /initial [PPh₃]. ^d See Figure 15. ^c See Figure 14. ^f For 0.08 M NaDFe₂(CO)₈ and 0.4 M PPh₃, k_2 = 3.1 × 10⁻³ M⁻¹ s⁻¹, and thus k_H/k_D = 0.9 ± 0.2 (error bars assuming ±15% in each rate constant).

Figure 17. ESR (ambient temperature, THF) of (1) a typical 0.1 M NaHFe₂(CO)₈ solution; (2) a 0.1 M NaHFe₂(CO)₈ directly after addition of 0.18 M HOAc; (3) the reaction mixture of 0.10 M NaHFe₂(CO)₈ plus 0.20 M *trans*-CH₃CH=CHCO₂Et (25.0 °C) 15 h after completion.

composition-total) = $k_{1D} + k_{2D}$ [HOAc], with $k_{1D} = 2.3 \times 10^{-5} \,\mathrm{s}^{-1}$ and $k_{2D} = 2.6 \times 10^{-4} \,\mathrm{M}^{-1} \,\mathrm{s}^{-1}$ (25.0 °C). Thus with no HOAc present, NaHFe₂(CO)₈ decomposes with a $t_{1/2}$ = 8.4 h at 25 °C. In the presence of 0.2 M HOAc, this decomposition is accelerated to a $t_{1/2}$ of about 2.5 h. This instability of NaHFe₂(CO)₈ has made mechanistic studies of its chemistry considerably more difficult.

For the acid-independent path, the reaction stoichiometry is clearly⁴⁶ that depicted in the equation

$$3NaHFe_2(CO)_8 \rightarrow 2NaHFe(CO)_4$$

+ $1NaHFe_3(CO)_{11} + 1Fe(CO)_5$ (13)

For the acid-catalyzed decomposition, increasing amounts of NaHFe₃(CO)₁₁ are observed by ¹H NMR with increasing [HOAc]. Using a large excess of HOAc (9 equiv HOAc/ NaHFe₂(CO)₈), the products due solely to the acid-catalyzed NaHFe₂(CO)₈ decomposition could be observed. This stoichiometry, again established using ¹H NMR and GLC,⁴⁷ is shown in the equation

$$2NaHFe_2(CO)_8 + HX \rightarrow H_2 + NaHFe_3(CO)_{11} + Fe(CO)_5 + NaX \quad (14)$$

Added NaHFe(CO)₄ retards the first-order acid-independent NaHFe₂(CO)₈ decomposition path, but by only a factor of 2.6. (For 0.10 M NaHFe(CO)₄ and 0.10 M NaHFe₂(CO)₈, $k_{1D}' = 8.6 \times 10^{-6} \text{ s}^{-1}$, 25.0 °C.) Thus it appears that this pathway does not involve *reversible* iron-iron bond rupture to NaHFe(CO)₄ and Fe(CO)₄. The acid-independent path is also ion pairing insensitive relative to the reduction reactions. Added NMP (4.7% (v/v) NMP/THF) has no effect within experimental error, $k_{1D}'' = 2.7 \times 10^{-5} \text{ s}^{-1}$ (25.0 °C).

ESR Detection of Radicals in NaHFe₂(CO)₈ Solutions. As stated previously, two reactions catalyzed by NaHFe₂-(CO)₈/THF solutions have been observed that are possibly radical in nature. One is the incorporation of deuterium from DFe₂(CO)₈⁻ into the allylic methyl group of CH₃CH= CHCO₂Et, eq 15, while the other is cis-trans isomerization without deuterium incorporation, eq 16.

$$CH_{3}CH = CHCO_{2}Et$$

$$\xrightarrow{"DFe_{2}(CO)_{8}}^{"}CH_{x}D_{3-x}CH = CHCO_{2}Et \quad (15)$$

$$cis-CH_3CH = CHCO_2Et$$

 $\xrightarrow{"DFe_2(CO)_8} trans-CH_3CH = CHCO_2Et$ (16)

With the hope of observing directly possible free-radical species, ESR experiments were undertaken.

Spectrum 1, Figure 17, shows that in a typical 0.10 M NaHFe₂(CO)₈/THF solution, an ESR signal at $g = 2.045 \pm 0.002$ is indeed seen at ambient temperature. No proton hyperfine is observed in this g = 2.046 signal. This signal is reminiscent of the g = 2.0455 (25 °C, THF) signal observed by Muetterties^{18a} for the 17-electron, d⁷, C₃H₅Fe(CO)₃ moiety:

$$[C_3H_5Fe(CO)_3]_2 \rightleftharpoons C_3H_5Fe(CO)_3 \cdot (g = 2.0455)$$
 (17)

In order to test whether or not these radicals (Figure 17) are involved in reductions by "NaHFe₂(CO)₈", the following experiments were performed. These experiments were repeated and gave identical results each time.

In the first experiment, the addition of 0.18 M HOAc to a 0.1 M NaHFe₂(CO)₈/THF solution at 25 °C immediately gave an increase in the g = 2.046 signal along with new signals at $g = 2.008 \pm 0.002$ and $g \simeq 2.05$ (rigorously 2.046 < g < 2.055), spectrum 2, Figure 17. From the large magnitude of the g values, the two signals at $g \simeq 2.05$ and g = 2.046 are undoubtedly transition metal free radicals while the smaller signal at g = 2.008 is an organic radical. Much smaller amounts of these same signals at $g \simeq 2.05$ and g = 2.008 were observed in NaHFe₂(CO)₈/THF solution (no HOAc) that had been stored at 25 °C (under nitrogen) for about 6 h.

In the second experiment, the $g \simeq 2.05$, 2.046, and 2.008 signals were monitored as a function of time during the re-

duction of trans-CH₃CH=CHCO₂Et. In the reaction of 0.10 M NaHFe₂(CO)₈ and 0.20 M trans-CH₃CH=CHCO₂Et, the signals at $g \simeq 2.05$ and 2.008 increased in intensity (the g = 2.046 signal remained approximately the same) at a rate similar to the rate of CH₃CH₂CH₂CO₂Et formation. Spectrum 3, Figure 17, shows the final ESR obtained after 18 h at 25 °C, about 15 h after all the CH₃CH=CHCO₂Et had been reduced. This spectrum shows that these radicals are quite stable. If these signals were due to reactive intermediates that are proportional to the concentration of NaHFe₂(CO)₈, they should have eventually disappeared.

Finally, additional experiments were designed to probe the identity and chemical reactivity of these radicals. The g = 2.046 signal is also observed in a saturated solution of Na₂-Fe₂(CO)₈ in THF. Although this experiment makes it tempting to suggest that this signal is due to Na⁺(Fe(CO)₄)⁻, traces of water could protonate this species to give HFe(CO)₄. A very weak g = 2.046 signal is also observed in solutions of NaHFe(CO)₄ and Et₃NH⁺(HFe₃(CO)₁₁)⁻. Although a 0.10 M NaHFe₂(CO)₈ in THF solution did not initiate the polymerization of 0.40 M styrene, addition of dimethyl maleate immediately removed the g = 2.056 signal, but did not affect the g = 2.046 or 2.008 signals.

Mechanistic Studies of Reductions in 1,4-Dioxane Using Na₂Fe(CO)₄, Fe(CO)₅, and HOAc. The insolubility of NaH-Fe₂(CO)₈ and NaHFe(CO)₄ in dioxane has severely thwarted attempts^{48a} to discover the active reagent(s) in this solvent, and no definitive conclusions about the active species(s) can be reached.^{48b}

Mechanistic Studies of HFe(CO)₄⁻ Additions to α,β -Unsaturated Carbonyl Compounds. In order to be able to compare them directly to reduction using binuclear NaHFe₂(CO)₈, additions of mononuclear NaHFe(CO)₄ to α,β -unsaturated carbonyl compounds were briefly examined. As mentioned previously, eq 6, the addition of NaHFe(CO)₄ to CH₂= CHCO₂Et is regiospecific and irreversible, yielding an isolable α -iron alkyl intermediate, [CH₃CH(Fe(CO)₄)CO₂Et]⁻. This reaction is inhibited by *at least* 100-fold by 1 atm of CO, a result also observed by Takegami.⁴⁹

At 25.0 °C, bubbling 20% 13 CO (1 atm CO with no HOAc present) through a 0.2 M NaHFe(CO)₄ solution in THF showed on the average that 3.6% of the four carbonyls in NaHFe(CO)₄ had exchanged in 3.0 min by 13 C NMR analysis.⁵⁰ These 13 CO incorporation and CO inhibition studies are consistent with the active species being the coordinatively unsaturated hydride, NaHFe(CO)₃:

NaHFe(CO)₄
$$\stackrel{k_1'}{\underset{k_{-1}'}{\longrightarrow}}$$
 NaHFe(CO)₃ + CO (18)

Thus in 3.0 min, at least 14% of the NaHFe(CO)₄ ($K_1' \simeq 9 \times 10^{-4} \text{ s}^{-1}$) gives NaHFe(CO)₃ + CO.

It is important to note that in order for the NaHFe(CO)₄ and NaHFe₂(CO)₈ ¹³CO exchange results to be directly comparable, they were run side by side, under identical conditions. As stated previously, NaHFe₂(CO)₈ showed no ¹³CO incorporation in 3.0 min, requiring $k_1 \le 6 \times 10^{-5} \text{ s}^{-1}$ (eq 11).

Since monoiron alkyl compounds, RFe(CO)₄⁻, are the primary product of NaHFe₂(CO)₈ additions in the absence of acid to α,β -unsaturated carbonyl compounds, their protonolysis reaction to yield RH was briefly studied. Previously, addition of 0.16 M HOAc to 0.1 M Na⁺[CH₃CH₂CH-(Fe(CO)₄)CO₂Et]⁻ gave complete protonolysis to CH₃CH₂CH₂CO₂Et in ≤ 1 min at 25.0 °C, $k_2 \geq 0.07$ M⁻¹ s⁻¹. Monitoring the reaction by ¹H NMR, a 0.12 M solution of previously isolated³⁷ PPN⁺[CH₃CH(Fe(CO)₄)CO₂Et]⁻ in THF- d_8 and 0.22 M HOAc gave a reasonable fit to a second-order plot with $k_2 \sim 9 \times 10^{-3}$ M⁻¹ s⁻¹ at 35 °C. The reaction rate of an identical experiment except with ~five times as much HOAc was approximately five times faster. Usually the protonolysis of RFe(CO)₄⁻ compounds (R = *n*-alkyl) is very fast.²⁹ Thus it appears that α -electron withdrawing ester groups stabilize the alkyl iron compounds and reduce the rate of protonolysis. Also, it tentatively appears that there is an ion-pairing effect upon this protonolysis since the Na⁺ salt is faster than the PPN⁺ salt even though the PPN⁺ reaction was carried out at 35 °C, 10 °C higher than the Na⁺ reaction. We presume that this protonolysis proceeds via a sequence at iron of oxidative addition of H⁺, followed by reductive elimination of RH.

Discussion

Synthetic. A comparison of various common methods used to reduce the olefinic bond in α,β -unsaturated carbonyl compounds is given in Table X. The reductions described in this paper utilizing NaHFe₂(CO)₈ or Na₂Fe(CO)₄, Fe(CO)₅, and HOAc in dioxane can be seen to be superior to or to complement the other available methods that effect this transformation.

Noyori⁵¹ has described a related reduction based on $Fe(CO)_5$ and NaOH in methanol. Although the active species is not defined by Noyori, experiments in our laboratory have demonstrated that initially NaHFe(CO)₄ is the only iron hydride formed under his conditions. Reductions of $\Delta^{1.9}$ -2-octalone yield products with a cis/trans ratio of 37/63 under Noyori's conditions,⁶⁵ while NaHFe₂(CO)₈ gives cis/trans = 4/1 (entry 6, Table 1) and the dioxane conditions give cis/trans = 87/13 (entry 2, Table 11). Both in dioxane as well as THF, reductions using NaHFe₂(CO)₈ are faster and give higher yields.

Both sets of reducing conditions described in this paper are specific to double bonds conjugated to carbonyl groups, as demonstrated by the reduction of carvone (entry 3, Table 1, and entry 1, Table 11). This is in contrast to Wilkinson's catalyst (entry 7, Table X), which preferentially hydrogenates the isopropenyl group in this substrate. The very promising hydrosilylation techniques (entry 8, Table X) developed by Ojima⁵⁶ is also specific for conjugated double bonds. Isolated double bond attack is a problem with a number of other reducing methods (10, 14, 15).

Although heterogeneous hydrogenation suffers from many problems, including selectivity,^{55a} conditions are available for the reduction of olefins conjugated to carbonyl groups in the presence of isolated double bonds.^{62c} Heterogeneous hydrogenation conditions exist^{62a} for the reduction of $\Delta^{1,9}$ -2-octalone with cis/trans = 93/7, which is better than the 87/13 ratio achieved in this paper (entry 2, Table 11). Heterogeneous hydrogenation has an advantage over homogeneous transition metal systems in that it is better at reducing large, bulky substrates like steroids. Homogeneous systems have the advantage of greater selectivity and mildness, as demonstrated by the toletration of epoxides, amides, nitriles, lactones, and aldehydes by NaHFe₂(CO)₈.

Dissolving metal reductions (15) are particularly useful for the reductions of enones in steroids.^{63d} In fused ring systems, low cis/trans ratios are usually obtained,^{63a,d} in contrast to the reductions described in this paper. For simpler substrates, dimerization is a problem, although it can be diminished by addition of a proton donor.^{62e,f}

Mechanistic. Previously,^{21a} we presented preliminary evidence for the mechanism of reductions using $NaHFe_2(CO)_8$ in THF shown in Scheme 11. We now consider this mechanism step by step, with the corresponding evidence bearing on each step.

The First Step. The first step, concerted reaction of the olefin with $NaHFe_2(CO)_8$, was postulated after the four plausible, a priori, $NaHFe_2(CO)_8$ fragmentation reactions, Scheme III,

Table X. Methods for Reducing the Olefinic Bond in α,β -Unsaturated Carbonyl Compounds

Entry	Reagent	Types of α,β -unsaturated compds reduced	Advantages	Disadvantages	Ref
<u></u> .					
1	NaHFe ₂ (CO) ₈	Aldehydes, ketones, esters, lactones, amides, nitriles	Mild, selective, high yield	Stoichiometric, air sensitive	
2	Na ₂ Fe(CO) ₄ , Fe(CO) ₅ , HOAc,	Ketones, esters, nitriles	Selective, high yield	Stoichiometric, air sensitive, reduces aldehydes	
3	Fe(CO) ₅ , NaOH	Aldehydes, ketones, esters, lactones, nitriles	Mild, high yield	Stoichiometric, air sensitive, slow reactions	51
4	HCo(CO)₄	Ketones, aldehydes		Stoichiometric, high temp and pressure required to generate HCo(CO) ₄ , limited to simple substrates, reduction under CO atmosphere required	52
5	$HCo(CN)_5^{3-}$	Ketones, esters, acids, amides, nitriles	Catalytic	Aldehydes are reduced slowly	53
6	LiCuHR	Ketones, aldehydes, esters	Selective	Greater than 4 equiv of the hydride required, substrates polymerize in some cases, air sensitive	54
7	RhL ₃ Cl	Ketones, aldehydes, esters, acids, nitro compounds	Catalytic selective	CO abstracted from aldehydes, reductions air sensitive	55
8	RhL3Cl, R3SiH	Ketones, aldehydes	Catalytic, high vield, selective	Nitriles give stable α -silyl nitriles, reductions air sensitive	56
9	$Rh_6(CO)_{16}, CO, H_2O, Rh_4(CO)_{12}$	Ketones, aldehydes, nitriles, amides	Catalytic selective	High pressure required	57
10	RuL_3Cl_2 , alcohol	Ketones	Catalytic	Rearranges carvone, reductions air sensitive	58
11	CrCl ₂	Esters, acids, nitriles, ketones	Olefins not isomerized	Limited primarily to substrates activated by two carbonyls	59
12	NaBH ₄	Esters, nitriles, amides lactones	Readily available	Limited primarily to substrates activated by two carbonyls	60
13	PhCH ₂ NH ₂ KOBu-t	Ketones	Readily available	Yields for some simple ketones are low	61
14	Heterogeneous hydrogenation	Ketones, esters, aldehydes, nitriles	Catalytic	Lack of selectivity. double bond migration	62, 55a
15	Dissolving metal reductions	Ketones, esters, acids	Readily available	Reductive coupling to dimers; may reduce terminal nonconjugated double bonds	63
16	Zn, HCl	Ketones	Readily available	Causes skeletal rearrangements	64

were tested and found inconsistent with the experimental results. In fact, the observation of a rate law first order each in NaHFe₂(CO)₈ and RCH=CHCOR' rules out any mechanism (such as a-d, Scheme III) where NaHFe₂(CO)₈ reversibly breaks up into two fragments, only one of which eventually reacts with RCH=CHCOR'. Such mechanisms would show rate laws α [NaHFe₂(CO)₈]^{1/2}[RCH= CHCOR']¹. If the fragmentation were irreversible, it would show a rate law for α [NaHFe₂(CO)₈]¹ [RCH=CHCOR']⁰. This conclusion is verified by our independent study of the PPh_3 ligand substitution mechanism of NaHFe₂(CO)₈, which also shows a rate law first order in each reactant. The fact that reductions using $NaHFe_2(CO)_8$ are not inhibited by added $Fe(CO)_5$ and the observation that NaHFe₂(CO)₈ is at least 26 times more reactive than NaHFe(CO)₄ confirms that fragmention reactions (b) and (c), respectively, followed by reaction of only one of the fragments with RCH=CHCOR' are not involved. However, other mechanisms involving $NaHFe_2(CO)_8$ fragmentation can be written that are consistent with the observed kinetics, first order each in NaH- $Fe_2(CO)_8$ and RCH=CHCOR'. In general, these fragmentation-recombination mechanisms⁶⁶ involve reversible breakup of NaHFe₂(CO)₈ into two fragments, A + B, the reversible reaction of one of the fragments, presumably the coordinatively unsaturated one, with RCH=CHCOR', to give a new fragment B', followed by the reversible reaction of A with B' to generate some intermediate such as II, Scheme II. Also possible is reaction between $NaHFe_2(CO)_8$ and RCH=CHCOR'to give A + B' directly. A mechanistic feature of all of the fragmentation recombination mechanisms is that they are multistep ways to accomplish what step 1, Scheme 11, accomplishes in a single step. A variety of experiments were designed to test these possible mechanisms and are presented below. We feel that these data, especially the consideration of the PPh₃ ligand substitution reaction, suggest that any such

fragmentation-recombination mechanism involving reactions (a-d), Scheme III, are unlikely to be important.

The participation of reactions (b) or (c) both in reductions using $NaHFe_2(CO)_8$ and its reaction with PPh₃ has been ruled out by several pieces of evidence. The fact that NaHFe(CO)₃L $(L = PPh_3)$ is not formed in the reaction of NaHFe₂(CO)₈ with PPh₃ argues against any fragmentation-recombination mechanism involving the formation of $NaHFe(CO)_3$ or the direct reaction of olefin with NaHFe₂(CO)₈ to give NaH- $Fe(CO)_3(olefin)$ as a first step. Fragmentation-recombination mechanisms involving $NaHFe(CO)_4$ and $Fe(CO)_4$, reaction (c), can also be ruled out by our studies of the PPh₃ substitution reaction. If fragmentation to $NaHFe(CO)_4 + Fe(CO)_4$ were important, then the PPh₃ ligand substitution products should be NaHFe(CO)₄ + Fe(CO)₄(L). For example, $Fe(CO)_{4}$ -(olefin) plus 1 equiv of PPh3 react, via initial olefin dissociation, to give a predominantly Fe(CO)₄(PPh₃) but, as is often observed.^{81,82} also some $Fe(CO)_3(PPh_3)_2$ with a $Fe(CO)_3$ - $(PPh_3)_2/Fe(CO)_4(PPh_3)$ ratio $\ll^{1/3}$. In contrast, we observe mostly $Fe(CO)_3(PPh_3)_2$ with a $Fe(CO)_3(PPh_3)_2/Fe(CO)_4$ -(PPh₃) ratio of 2. Furthermore, a control reaction demonstrated that $Fe(CO)_4(PPh_3)$ is stable under the reaction conditions. Authentic NaHFe(CO)₄, Fe(CO)₄(PPh₃), and PPh₃ showed no observable further reaction (i.e., to Fe(CO)₃-(PPh₃)₂) in 4 h. The above results argue against fragmentation-recombination mechanisms involving NaHFe(CO)4 and Fe(CO)₄. However, we note that for PPh₃, its direct reaction with $NaHFe_2(CO)_8$ to give $NaHFe(CO)_4$ and $Fe(CO)_4$ -(PPh₃) appears to be a viable pathway (vide infra, Scheme IV). Thus we can postulate a sequence of steps in which olefin reacts reversibly with $NaHFe_2(CO)_8$ to produce $NaHFe(CO)_4$ plus Fe(CO)₄(olefin) followed by efficient, reversible recombination of these fragments to give II, Scheme II. Indeed, mixing 1 equiv each of NaHFe(CO)₄, Fe(CO)₄(PhCH= $CHCO_2Et$), and HOAc produces essentially the same results

1

Scheme II. Proposed Mechanism for the Reduction of RCH=CHCOR' by $NaHFe_2(CO)_8$

Reactions Occurring after the Rate-Determining Step

$$Na^{*} \begin{bmatrix} RCH_{s}CHCOR' \\ Fe(CO)_{4} \end{bmatrix}^{*} + HX$$

$$\xrightarrow{fast} RCH_{2}CH_{2}COR' + Fe(CO)_{4} + NaX$$

$$2Fe(CO)_{4} \xrightarrow{fast} Fe_{2}(CO)_{8}$$

$$Fe_{2}(CO)_{8} + NaHFe_{2}(CO)_{8} \xrightarrow{fast} NaHFe_{3}(CO)_{11} + Fe(CO)_{5}$$

Predicted Stoichiometries

With HOAc

 $2NaHFe_2(CO)_8 + RCH = CHCOR' + HX$

$$\longrightarrow 1RCH_2CH_2COR' + 1NaHFe_3(CO)_{11} + 1Fe(CO)_5$$
+
1NaX

Without HOAc

3NaHFe2(CO)8 + 2RCH=CHCOR'

$$\rightarrow 2Na[RCH_{2}CH(Fe(CO)_{4})COR'] + 1NaHFe_{3}(CO)_{11} + 1Fe(CO)_{5}$$

Predicted Kinetic Expression $(K_1 \ll 1)$

d[RCH₂CH₂COR']

d*t*

= $K_1(k_2 + k_3[HX])[NaHFe_2(CO)_9][RCH=CHCOR']$

Observed Kinetic Expression

 $\frac{d[RCH_2CH_2COR']}{dt}$ = $(k_{2R} + k_{3R} [HX])[NaHFe_2(CO)_8][RCH=CHCOR']$

as starting the reaction with NaHFe₂(CO)₈ and PhCH= CHCO₂Et. At present, we cannot rule out this possibility, but have simply chosen the least complex mechanism, Scheme IV.

A CO dissociative pathway, reaction (a), was initially what we expected NaHFe₂(CO)₈ and other systems with bridging carbonyls to exhibit. A recent study^{10a} of the ligand substitution reactions of Ir₄(CO)₁₂ provides excellent precedent for this hypothesis. However, the lack of facile ¹³CO exchange with NaHFe₂(CO)₈, $k_{1a} \le 6 \times 10^{-5} \text{ s}^{-1}$ (Scheme III), and the small CO dependence of these reductions are inconsistent with a CO dissociative pathway. Furthermore, the unexpected,⁶⁸ yet facile ¹³CO exchange with NaHFe(CO)₄ (under identical conditions) and the large CO dependence of NaH- Scheme III. Plausible, a Priori, $NaHFe_2(CO)_8$ Fragmentation Reactions

$$NaHFe_2(CO)_7 + CO \qquad (a)$$

$$N_{a}HFe_{2}(CO)_{s} \xrightarrow{k_{-1}a} N_{a}HFe(CO)_{3} + Fe(CO)_{5}$$
 (b)

$$-_{3a}^{n_{3a}} NaHFe(CO)_4 + Fe(CO)_4 \qquad (c)$$

^a
$$HFe(CO)_4 \cdot + Na^+(Fe(CO)_4)^- \cdot (d)$$

Fe(CO)₄ reductions emphasizes the difference between the NaHFe₂(CO)₈ mechanism and the NaHFe(CO)₄ CO dissociative mechanism. The fact that added *trans*-CH₃CH= CHCO₂Et does not catalyze the exchange of ¹³CO with NaHFe₂(CO)₈ rules out an associative CO displacement by CH₃CH=CHCO₂Et. As final proof for the fact that free CO cannot be involved in these reductions, NaHFe(CO)₄ is never seen as a product of reductions using NaHFe₂(CO)₈. Free CO and NaHFe₂(CO)₈ react rapidly to form NaHFe(CO)₄ and Fe(CO)₅.

The final possible fragmentation-recombination mechanism involves the radicals $HFe(CO)_{4}$ and $Fe(CO)_{4}$, reaction (d). In the presence of acid, protonation of $HFe_2(CO)_8$ to give $H_2Fe_2(CO)_8$ followed by its fragmentation to $HFe(CO)_{4}$ could occur (eq 19), consistent with the observed acid dependence.

$$HFe_2(CO)_8^- + H^+ \rightleftharpoons H_2Fe_2(CO)_8 \rightleftharpoons 2HFe(CO)_4$$
 (19)

This reaction has some precedent in that rapid fragmentation at 25 °C of the formally d⁷ binuclear iron system, $[C_3H_5Fe(CO)_3]_2$, to give reactive $C_3H_5Fe(CO)_3$, monomers, has recently been observed.^{18a} However, it is interesting to note that this system has an extremely long Fe-Fe bond,⁷⁰ 3.13 Å, while HFe₂(CO)₈⁻ is apparently held together more tenaciously, the Fe-Fe distance²⁴ being 2.521 Å. This shorter bond distance is consistent with the general observation⁷¹ that bridging carbonyls reduce the metal-metal bond distance (although bridging hydrides often increase it about 0.15 Å⁷²).

If one writes a mechanism using the reaction of d⁶, $HCo^{111}(CN)_5^{3-}$ with α,β -unsaturated carbonyl compounds as a model⁷³ and keeping in mind the observed kinetics, one would expect $HFe(CO)_4$ and RCH=CHCOR' to react via hydrogen atom transfer to give the free radical $RCH_2\dot{C}HCOR'$ and $Fe(CO)_4$ (eq 20), consistent with our observed regiospecificity.

$$\operatorname{RCH}_{2}\operatorname{CH}_{2}\operatorname{COR}' + \operatorname{Fe}(\operatorname{CO})_{4}$$

$$\uparrow \operatorname{HFe}(\operatorname{CO})_{4} \cdot$$

$$\operatorname{HFe}(\operatorname{CO})_{4} \cdot + \operatorname{RCH} = \operatorname{CHCOR}' \Longrightarrow \operatorname{RCH}_{2}\dot{\operatorname{CHCOR}'} + \operatorname{Fe}(\operatorname{CO})_{4}$$

$$\downarrow \operatorname{Fe}(\operatorname{CO})_{4}^{-} \cdot$$

$$[\operatorname{RCH}_{2}\operatorname{CH}(\operatorname{Fe}(\operatorname{CO})_{4})\operatorname{COR}']^{-}$$

$$(20)$$

As expected for a radical mechanism, reductions with $HCo(CN)_5^{3-}$ show radical-dimerization products and that methyl substitution α to the carbonyl greatly increase the reaction rate owing to stabilization of the resultant organic radical. Also, $HCo(CN)_5^{3-}$ will initiate polymerization reactions. *Exactly the opposite results are found for NaH-Fe*₂(*CO*)₈. High, often 100%, yields of reduced product, RCH_2CH_2COR' , but no dimers are observed. α -Methyl substitution slows the rate of reduction and NaHFe₂(CO)₈ in

Scheme IV. Proposed Mechanism for $NaHFe_2(CO)_8$ Ligand Substitution Reactions

Reactions Occurring after the Rate-Determining Step

 $\text{CO} + \text{NaHFe}_2(\text{CO})_8 \rightarrow \text{NaHFe}(\text{CO})_4 + \text{Fe}(\text{CO})_5$

THF will not initiate the polymerization of styrene. Also, this mechanism (eq 20) could easily deviate from the simple kinetics observed, rate α [NaHFe₂(CO)₈]¹[RCH=CHCOR']¹, and it is unlikely that the hydrogen atom transfer from $HFe(CO)_{4'}$ to RCH=CHCOR' would be reversible as required by our data or would show our inverse deuterium isotope effect. In fact, because of the fact that the reaction $HFe(CO)_{4}$, + RCH₂CHCOR' \rightarrow RCH₂CH₂COR' + Fe(CO)₄ would be rate determining, this radical mechanism should show a positive primary deuterium isotope effect. It also appears that the radicals we observed by ESR are not involved in these reduction reactions.⁷⁴ Finally, the stereospecificity we see in deuterium isotope labeling studies using cyclic substrates such as 4,4-dimethylcyclohexenone is inconsistent with reversible formation of a RCH₂CHCOR' free radical. On the basis of the above arguments, we disfavor fragmentation-recombination mechanisms involving $HFe(CO)_{4'}$ or $HFe(CO)_{4'}$ and $Fe(CO)_4^{-1}$.

At this point, we have considered all plausible NaH- $Fe_2(CO)_8$ fragmentation reactions. The simplest interpretation of these results is that the first step involves concerted addition of NaHFe₂(CO)₈ to RCH=CHCOR', step 1, Scheme II. Previously,^{21a} since most organometallic reactions occur in discrete, simple steps, we invoked a step involving associative olefin coordination to give NaHFe2(CO)8(RCH=CHCOR'), a species which appears to violate the 18-electron rule. Although structures can be written⁷⁵ for this species that do not violate the 18-electron rule, we have omitted this possible intermediate since a careful IR and low-temperature ¹³C and 100-MHz NMR search provided no evidence for its existence. Initial electron transfer to give $[HFe_2(CO)_{8'} +$ RCHCH= $C(O^{-})R'$] is also consistent with our data, even though no correlation was observed between the k_2 (obsd) vs. the $E_{1/2}$ reduction potential of various substrates. Even if the first step involved electron transfer, such a correlation is unlikely since reductions using $NaHFe_2(CO)_8$ are sensitive to steric effects and because electron transfer would not be the rate-determining step.

It may be recalled that we cannot rule out a fragmentation-recombination mechanism involving direct reaction of NaHFe₂(CO)₈ and olefin to give NaHFe(CO)₄ + Fe-(CO)₄(olefin) followed by their efficient, reversible recombination. An important result of this work is that if this or other fragmentation-recombination mechanisms are involved, the recombination reaction is very efficient. Thus the fragments formed⁷⁵ are not "free", but behave as "caged" or "paired" fragments.

Reversible, regiospecific hydride addition, l = II (Scheme II), is required by our deuterium isotope labeling studies and our inverse isotope effect. We have shown that the observed inverse isotope effect could be quantitatively accommodated by this equilibrium. In short, this equilibrium isotope effect is inverse because the zero-point energy difference between a

(bridging) Fe_2-H and Fe_2-D bond is less than that between a C-H and C-D bond. This appears to be the most reasonable way to account for this inverse isotope effect.^{78b} Although we attempted to generate II (and thus III) independently by the addition of CH₃CH₂CH(OTs)CO₂Et to Na₂Fe₂(CO)₈ in THF-d₈, no identifiable products were observed by NMR.

The Remaining Steps. After the initial part of this mechanism is established, the remaining steps follow quite naturally.

In the next step, the alkyl intermediate, $[RCH_2CH(Fe_2(CO)_8)COR']^-$ (II), is partitioned between two paths. In the absence of acid iron-iron bond cleavage to the stable mononuclear $[RCH_2CH(Fe(CO)_4)COR']^-$ (II1), and $Fe(CO)_4$ is the rate-determining step (III was observed directly by NMR). When HOAc is present, protonolysis of II occurs. The presence of these two pathways is required by the HOAc dependence, $k_2(obsd) = k_{2R} + k_{3R}[HOAc]$. Note that only at approximately 0.10 M HOAc do these pathways compete equally, i.e., $k_{2R}/(k_{3R}[HOAc]) \approx 0.1$ M/ [HOAc].

After the rate-determining step, three reactions occur. First, the protonolysis of 111 occurs. This was studied independently and found to be fast as required by the reduction reaction kinetics. Next Fe(CO)₄ dimerizes to Fe₂(CO)₈. This reaction has been observed for Fe(CO)₄ generated in a matrix.⁸⁰ Interestingly, the formation of Fe₂(CO)₈ can account⁸¹ for the presence of Fe(CO)₃L₂ (L = PR₃) when Fe(CO)₄ is generated in the presence of L. The formation of Fe(CO)₃L₂ was studied previously but is not well understood.⁸² The third reaction is capture of Fe₂(CO)₈ by NaHFe₂(CO)₈ to give NaH-Fe₃(CO)₁₁ + Fe(CO)₅. This reaction has been observed independently in the acid-catalyzed NaHFe₂(CO)₈ decomposition mechanism. It is this step which accounts for the greater than 1 NaHFe₂(CO)₈/RCH=CHCOR' stoichiometry.

As shown in Scheme 11, this mechanism accounts quite nicely for the observed stoichiometry and kinetics both with and without HOAc.

Ion Pairing. These studies demonstrate that triple ions, tight and solvent-separated ion pairs, as well as dissociated ions are formed by NaHFe₂(CO)₈ in THF. In addition, the Na⁺ cation prefers to bind to the bridging vs. the terminal carbonyl groups. A rate decrease is observed for Li⁺ > Na⁺ > PPN⁺ > Na⁺-(crown) > Na⁺ (5.2NMP) although the total rate span is only a factor of 7. Although it is clear that dissociated and solvent-separated ions are less reactive, the exact contributions by tight vs. triple ions cannot be determined from our data.

Comparison of $HFe_2(CO)_8^-$ and $HFe(CO)_4^-$ Mechanisms. A comparison of the mechanisms of the binuclear vs. the mononuclear hydride reveals several interesting points. First, $HFe_2(CO)_8^-$ has an associative first step whereas $HFe(CO)_4^$ is dissociative. Second, $HFe_2(CO)_8^-$ exhibits a reversible migratory insertion while that of $HFe(CO)_4^-$ is irreversible. Third, the protonolysis of $RFe_2(CO)_8^-$ to yield RH is relatively slow whereas $RFe(CO)_4^-$ reacts rapidly with a proton to give RH. It is likely that the comparison of other binuclear and higher clusters to their mononuclear counterparts will reveal further differences.

PPh₃ Substitution. Eventual iron-iron bond cleavage is the predominant reaction of $HFe_2(CO)_8^-$ and added ligands such as CO or PPh₃. The first step of these reactions must be associative to account for the second-order rate law, rate α . [NaHFe₂(CO)₈]¹[PPh₃]¹, the small value of $k_H/k_D = 0.9 \pm 0.2$, the products (especially Fe(CO)₃PPh₃)₂⁸³) and stoichiometry observed, and the fact that all plausible fragmentation of fragmentation-recombination mechanisms (reactions (c-d), Scheme II) have been ruled out. The mechanism proposed for PPh₃ substitution, Scheme IV, is supported by all our observations. From the ratio of Fe(CO)₄L/Fe(CO)₃L₂ of $\approx \frac{1}{2}$ we conclude that $k_1/k_2 \approx \frac{1}{2}$. The small isotope effect observed,

Scheme V. Proposed Mechanisms for $NaHFe_2(CO)_8$ Acid-Independent and Acid-Dependent Decomposition

Without Acid
NaHFe₂(CO)₈
$$\xrightarrow{k_{1D}}$$
 NaHFe(CO)₄ + Fe(CO)₄
Fe(CO)₄ \xrightarrow{fast} $\frac{1}{2}$ Fe₂(CO)₈

 $Fe_2(CO)_8 + NaHFe_2(CO)_8 \xrightarrow{fast} NaHFe_3(CO)_{11} + Fe(CO)_5$

 $3NaHFe_2(CO)_8 \rightarrow 2NaHFe(CO)_4$

+ 1NaHFe₃(CO)₁₁ + 1Fe(CO)₅

$$NaHFe_{2}(CO)_{8} + HX \stackrel{\kappa_{1}}{\longleftarrow} H_{2}Fe_{2}(CO)_{8} + NaX$$
$$\frac{k_{2}}{rds} H_{2} + Fe_{2}(CO)_{8}$$

$$\operatorname{Fe}_{2}(\operatorname{CO})_{8} + \operatorname{NaHFe}_{2}(\operatorname{CO})_{8} \xrightarrow{\operatorname{fast}} \operatorname{NaHFe}_{3}(\operatorname{CO})_{11} + \operatorname{Fe}(\operatorname{CO})_{5}$$

Sum

 $2NaHFe_2(CO)_8 + HX \rightarrow H_2 + NaHFe_3(CO)_{11}$

$$+ Fe(CO)_{s} + NaX$$

 $k_{\rm H}/k_{\rm D} = 0.9 \pm 0.2$, in the reaction with PPh₃, a ligand that cannot undergo migratory insertion, strongly supports our assertion that the inverse isotope effect in reduction reactions is associated with the reversible hydride insertion step. It is interesting that no NaHFe(CO)₃L is observed. This could imply that HFe₂(CO)₇L has an unbridged hydride structure, with the hydride and PPh₃ ligands on different metal centers (e.g., (H)Fe-Fe(L)). Also worth noting is that, although the reaction NaHFe₂(CO)₈ + L to give NaHFe₂(CO)₇(L) + CO appears to occur for L = PPh₃, our data suggest that it is not important for L = RCH=CHCOR'.

NaHFe₂(CO)₈ Decomposition. NaHFe₂(CO)₈ was found to decompose by both acid-independent first-order as well as an acid-dependent second-order pathway, k_1 (total) = $k_{1D} + k_{2D}$ [HOAc]. The NaHFe₂(CO)₈ decomposition mechanisms proposed, Scheme V, are consistent with the observed kinetics and stoichiometries. Thus, owing to these decomposition mechanisms, the disappearance of NaHFe₂(CO)₈ in reduction reactions is, in general, given by

$$-d[NaHFe_{2}(CO)_{8}]/dt = \{2(k_{2R} + k_{3R}[HOAc]) + (k_{1D} + k_{2D}[HOAc])\}[NaHFe_{2}(CO)_{8}]$$

However, for reactions with olefin in excess, the term $k_{1D} + k_{2D}$ [HOAc] is negligible as shown by the zero intercept of Figure 8. It is interesting to note that the ratio of the rates of metal-metal bond cleavage to protonolysis (to give H₂) measured for NaHFe₂(CO)₈ decomposition, $k_{1D}/k_{2D} = 0.09$ M/[HOAc], are the same within experimental error as the ratio of metal-metal bond cleavage to protonolysis (to give RCH₂CH₂COR') found in the reduction reactions, k_{2R}/k_{3R} [HOAc] = 0.1 M/[HOAc].

Summary and Conclusions

This study describes the use of $NaHFe_2(CO)_8$ for the reduction of activated olefins including detailed evidence for the mechanism of these reductions. The key pieces of evidence for this mechanism are (1) a first-order dependence upon NaH-Fe_2(CO)_8 and activated olefin, i.e., a bimolecular, associative first step; (2) a reversible, regiospecific hydride addition step; (3) a reasonably large, inverse deuterium isotope effect.

We speculate that the above pieces of evidence will serve as diagnostics of a hitherto little appreciated, yet general, mechanism of metal hydride reductions of activated olefins.

Also noteworthy from this study is the magnitude of effort

required to establish the reactive species in a cluster reaction—even for a binuclear cluster, the simplest of all clusters. Quite clearly distinguishing between catalysis by cluster fragments, catalysts by "heterogeneous" metal from cluster decomposition, and true intact cluster catalysis is an important and difficult problem. General methods for solution of the above problems are currently under investigation.

Experimental Section

A, General. 1. Methods for Handling Air-Sensitive Compounds. Airand water-free conditions were maintained at all times throughout this work. A Vacuum Atmospheres Co. HE-193-1 recirculating inert atmosphere (nitrogen) drybox was used for the storage of Na₂-Fe(CO)₄-1.5dioxane, Na₂Fe₂(CO)₈, all solvents, HOAc, and all materials used for kinetic determinations. The level of O₂ and other impurities (H₂O, R₃N, and ROH) was monitored with Et₂Zn which fumes at \geq 5 ppm impurities, and with a light bulb with a hole in it, which generally burned for 2 or 3 weeks, indicating \leq 1 ppm impurties. All flasks and vials used in the kinetic experiments were dried at 140 °C overnight, then held under vacuum followed by cooling under nitrogen. Liquid transfers outside the drybox were handled by syringe and needlestock techniques. Nitrogen (99.996%) was further purified by passage through a BASF oxygen scavenger and Linde 3A molecular sieve.

2. Materials. Tetrahydrofuran (THF) was doubly distilled under nitrogen, first from CaH_2 in a recirculating still, then from sodium/ benzophenone into a dry, nitrogen-filled flask. reagent grade Nmethylpyrrolidinone (NMP) was refluxed over CaH_2 at reduced pressure for at least 2 days, followed by distillation into a dry flask containing activated 3A or 13X molecular sieve, followed by distillation from these molecular sieves into a dry flask. 1,4-Dioxane was distilled from CaH_2 under nitrogen. THF- d_8 (Merck Sharp and Dohme, Canada, Ltd.), 99% d, was used without further purification.

With the following exceptions organic substrates were commercially available and were dried and distilled before use. Ethyl crotonate was dried with CaCl₂ and distilled using a spinning band column. 4,4-Dimethylcyclohexenone,⁸⁴ dihydrocarvone,⁸⁵ 6,6-dimethyl-2-cyclohexenone,⁸⁶ γ -crotonolactone,⁸⁷ and $\Delta^{1.9}$ -2-octalone⁸⁸ were prepared using literature methods.

Na₂Fe(CO)₄-1.5dioxane was prepared by the method of Komoto.⁸⁹ Acetic acid was refluxed with acetic anhydride and chromium trioxide, followed by fractionation. DOAc (CD₃CO₂D) was purchased from Fisher Scientific, and used as received. Fe(CO)₅ (PCR, Inc.) was filtered, degassed, and stored over molecular sieve. Carbon monoxide (Liquid Carbonic, 99.5%) and ¹³C-labeled carbon monoxide (Monsanto Research Co.) were used without further purification. Triphenylphosphine was recrystallized from ethanol and dried in an Abderhalden. Bis(triphenylphosphine)iminium chloride (PPN+Cl-) was prepared by the method of Ruff,23 recrystallized from water, and dried in an Abderhalden. Anhydrous lithium bromide was prepared from 1,2-dibromoethane and lithium.90 Dicyclohexyl-18-crown-6 (Aldrich technical grade) was purified by chromatography on neutral alumina (eluting with an Et₂O-hexane mixture) to give the A and B isomers as a white, crystalline solid (mp 45-60 °C). Superior purification methods are now available.91

3. Equipment. Infrared spectra were obtained on a Perkin-Elmer 521 spectrophotometer. ¹H NMR spectra were obtained on a Varian A-60 spectrometer and 100-MHz¹H and ¹³C NMR spectra were obtained on a Varian XL-100 spectrometer. GC-mass spectral data were obtained with a Varian 2100 gas chromatograph coupled to a Varian CH-7 mass spectrometer. Conductivity measurements were made using an Industrial Instruments Model RC 13B2 bridge with a Yellow Springs Model 3403 dip cell (cell constant = 1.0). Temperature control to ±0.1 °C was maintained with a Forma-Temp Jr. constant temperature bath, and was monitored using a 76-mm immersion thermometer calibrated from -1 to 101 °C by 0.1 °C (VWR Scientific Co., no. 61032). A Varian E-12 spectrometer was used for EPR studies. Reactions were monitored by GLC on a Hewlett-Packard Model 5750 gas chromatograph with flame ionization detector (columns A, B, and C) and a Hewlett-Packard 5750 gas chromatograph with thermal conductivity detector (columns D, E, and F). The following columns were used for GLC analysis: column A, 10% OV-101 on Supelcon AWDMCS 80/100 mesh, 11 ft $\times \frac{1}{8}$ in. stainless steel tubing; column B, 10% Carbowax 20M on Chromosorb W AW, 80/100 mesh, 6.5 ft $\times \frac{1}{8}$ in. stainless steel tubing; column C, 30% saturated AgNO₃ in benzyl cyanide on Chromosorb P, 80/100 mesh, 5 ft $\times \frac{1}{8}$ in. stainless steel tubing; column D, 10% diethylene glycol adipate ester on Chromosorb A AW, 7 ft $\times \frac{1}{4}$ in. glass column, used with glass injector and exit port; column E, 10% SE-30 on Chromosorb W, 80/100 mesh, 7 ft $\times \frac{1}{4}$ in. aluminum tubing; column F, 15% MnCl₂ on Alcoa F1 alumina, 48/100 mesh, 12 ft $\times \frac{1}{4}$ in. copper tubing, followed by a tubular (10 $\times \frac{3}{4}$ in.) CuO furnace kept at 500 °C; column G, 3% OV-101 on Chromosorb Q, 100/120 mesh, 6 ft $\times \frac{1}{4}$ in glass column.

B. Preparation of Na₂Fe₂(CO)₈. In a drybox 10 g (28.9 mmol) of Na₂Fe(CO)₄-1.5dioxane was added to a 500-mL round-bottom flask equipped with magnetic stir bar and side arm. To this was added 200 mL of THF, and the flask was sealed with a serum stopper and removed from the drybox. The flask was attached to a bubbler and 3.90 mL of Fe(CO)₅ (28.9 mmol) was added via syringe. The solution was vigorously stirred for 3 h, during which time vigorous CO evolution ensued (caution). The solution turned red and precipitated orange $Na_2Fe_2(CO)_{8'}xTHF$ (x was shown to be between 3 and 4 by ¹H NMR analysis). Under positive nitrogen pressure, 200 mL of freshly distilled, degassed petroleum ether was added. The solution was decanted and washed twice more with petroleum ether. Residual solvent was removed in vacuo with a hot water bath, yielding a bright yellow powder. GLC analysis of the resulting $Na_2Fe_2(CO)_8$ in hexamethylphosphoramide showed only a trace of residual THF. Infrared bands were observed at 1914 (sh), 1868 (s), and 1821 cm⁻¹ (m) in THF. The Na₂Fe₂(CO)₈ was stored in a drybox.

C. Preparation of Homogeneous Solutions of M⁺HFe₂(CO)₈⁻. 1. $M^+ = Na^+$. $Na_2Fe_2(CO)_8$ (0.764 g, 2.00 mmol) was weighed into a 10.3×2.2 cm test tube equipped with magnetic stir bar. With a pipette, 20.0 mL of THF was added. Via syringe 0.112 mL of HOAc (2.00 mmol) was added, and the test tube was sealed with a serum stopper, removed from the drybox, and immediately placed in ice. The sample was centrifuged for 5-10 min. Samples prepared in this method yielded about 12-13 mL of yellow-brown, homogeneous 0.10 M NaHFe2(CO)8 solutions: vmax (THF) 1987 (s), 1940 (s), 1880 (s), 1852 (sh), 1770 (m), and 1730 cm⁻¹ (w); δ (THF, benzene 7.266 ppm) -8.47 (32 °C). Although NaHFe₂(CO)₈ decomposes slowly at ambient temperature, the solutions were stable for a few days in a -22 °C freezer, and were further manipulated in a drybox. These solutions were found to reduce excess dimethyl maleate with excess HOAc in 97% yield based on iron in 13 min (after 24 h, greater than 100% yields can be obtained).

2. \dot{M}^+ = PPN⁺. To 15 mL of 0.10 M homogeneous NaHFe₂(CO)₈ was added 0.861 g of PPNCl (1.52 mmol) in a centrifuge tube. The tube was sealed with a serum stopper, shaken, cooled in ice, and centrifuged to yield a homogeneous, yellow-brown solution of 0.1 M (PPN)⁺(HFe₂(CO)₈)⁻: ν_{max} (THF) same as sodium salt except that 1730-cm⁻¹ band was completely absent.

3. $M^+ = Li^+$. To 25 mL of homogeneous 0.10 M NaHFe₂(CO)₈ in THF was added 0.218 g of LiBr (2.5 mmol). The solution was shaken and centrifuged as previously described to give a 0.10 M homogeneous solution of LiHFe₂(CO)₈: ν_{max} (THF) same as that of sodium salt except that the 1730-cm⁻¹ absorbance has been replaced by an absorbance at 1618 cm⁻¹.

4. $M^+ = crown \cdot Na^+$. To 20 mL of homogeneous 0.10 M NaH-Fe₂(CO)₈ in THF was added 0.745 g of dicyclohexyl-18-crown-6 (2.0 mmol). The solution was stirred and used without further purification to give a homogeneous 0.10 M solution of crown $\cdot Na^+HFe_2(CO)_8^{-1}$: ν_{max} (THF) same as that of sodium salt except that the 1730-cm⁻¹ absorbance was completely absent; δ (THF, benzene 7.266) -9.01 (32 °C).

D. Preparation of Homogeneous Solutions of NaHFe(CO)₄, Pale yellow, homogeneous THF solutions (up to 0.3 M) of NaHFe(CO)₄, were prepared from Na₂Fe(CO)₄-1.5dioxane and HOAc using the method described to prepare homogeneous NaHFe₂(CO)₈ solutions: ν_{max} (THF) 1997 (m), 1903 (sh), 1878 (s), 1851 cm⁻¹ (sh); δ (THF, benzene 7.266) 8.74 at 32 °C.

E. Synthetic Reduction Procedures Using NaHFe₂(CO)₈ and HOAc in THF. 1. Reduction of *d*-Carvone. Using the procedure previously described, 11.5 mmol of Na₂Fe₂(CO)₈·x THF was prepared in 75 mL of THF. To this was added HOAc (1.0 mL, 18 mmol) followed by 0.94 mL of *d*-carvone (6 mmol). After sitting for 12 h, the resulting purple solution was poured into 100 g of ice, followed by addition of 75 mL of Et₂O. With stirring, FeCl₃ was added (*caution*: CO evolution) until further addition of FeCl₃ yielded little gas evolution. The green ether

solution was extracted with dilute HCl, water, saturated NaHCO₃, water, and saturated NaCl and then dried with MgSO₄. After concentration on a spinning evaporator, the resulting oil was eluted with heptane on a 4.5 \times 10 cm silica gel column until all the green $Fe_3(CO)_{12}$ was removed. The product was eluted with diethyl ether and concentrated on a spinning evaporator. Bulb-to-bulb distillation gave 0.69 g of crude product. GLC analysis on both column A (157 °C) and column B (210 °C) showed two components, one that coinjected with d-carvone and one that coinjected with authentic dihydrocarvone. Dihydrocarvone accounted for 46% of the crude product (35% total yield). A small sample of dihydrocarvone was isolated by preparative GLC: ν_{max} (neat) 3080, 1713, 1645, 888 cm⁻¹ (lit.⁸⁵ 3100, 1710, 1650, 892 cm⁻¹); δ (CDCl₃) 1.00 and 1.08 (3 H, two doublets, relative area 3.3/1, J = 6.0 and 6.5 Hz, respectively, for the epimeric trans-1,4 and cis-1,4 CHMe, respectively), 1.72 (3 H, MeC=CH₂), and 4.69 (2 H, MeC= CH_2).

2. Reduction of Acylamide. To a suspension of 10 mmol of Na₂-Fe₂(CO)₈ in 75 mL of THF prepared as described was added 1.14 mL of HOAc (20 mmol) and 0.36 g of acrylamide (5 mmol). After 15 h, the solution was worked up as described except that Cu(OAc)₂ was used to oxidize the residual iron hydrides, to yield 185 mg (50%) of propionamide: ν_{max} (THF) 1680 cm⁻¹; δ (CDCl₃) 1.15 (3 H, triplet, J = 7.4 Hz), 2.17 (2 H, quartet, J = 7.4 Hz), 6.5 (2 H, broad singlet).

3. Reduction of Cinnamonitrile. To a suspension of 20 mmol of Na₂Fe₂(CO)₈ in 100 mL of THF was added 1.14 mL of HOAc (20 mmol) and 1.25 mL of cinnamonitrile (10 mmol). After stirring overnight the iron carbonyl by-products were oxidized with Ce(NO₃)₆(NH₄)₂ and diethyl ether and dilute HCl were added. The ether layer was successively extracted with HCl, dilute NaHCO₃, and brine. The solution was dried with MgSO₄ and the solvent removed on a spinning evaporator. This gave 1.47 g of crude product which was found to be 83% pure by GLC (column A, 200 °C) for an isolated yield of 93%. A small sample was purified by distillation on a micro-spinning band column to give pure hydrocinnamonitrile: ν_{max} (neat) 3035, 2235, 1496, 1403, 746, 696 cm⁻¹; δ (CCl₄) 2.40, 2.51, 2.70, 2.79 (4 H, major peaks in multiplet), 7.16 (5 H, phenyl protons).

4. Reduction of γ -Crotonolactone. Using 12 mmol of Na₂Fe₂(CO)₈ and 18 mmol of HOAc in 75 mL of THF, 0.50 g of γ -crotonolactone (6 mmol) was reduced in the usual fashion to yield 0.39 g of γ -butyrolactone (76%): δ (CDCl₃) 4.33 (2 H, triplet, J = 6.1 Hz), 2.35, 2.41, 2.47 (4 H, major peaks in multiplet).

5. Reductions without Isolation. Yields in Table I were determined by GLC using internal standards and were corrected for molar responses. Products were identified by coinjection of authentic materials. Generally, 1-2 mmol of $Na_2Fe_2(CO)_8$ was generated in situ in 10 mL of THF. The amount of substrate and acid added is given in Table I.

F. Synthetic Reduction Procedures Using Na₂Fe(CO)₄-1.5Dioxane, Fe(CO)₅, and HOAc in 1,4-Dioxane, 1. Reduction of $\Delta^{1,9}$ -2-Octalone. In an inert atmosphere box, 2.08 g of Na₂Fe(CO)₄-1.5dioxane (6.0 mmol) was added to 50 mL of 1,4-dioxane in a 125-mL Erlenmeyer flask equipped with magnetic stir bar. The flask was sealed with a serum stopper and removed from the inert atmosphere box. Via syringe, 0.810 mL of Fe(CO)₅ (6 mmol), 0.684 mL of HOAc (12.2 mmol), and 0.166 g of $\Delta^{1,9}$ -2-octalone (1.0 mmol) were added. The solution was stirred overnight. The purple iron by-products were decomposed with Clorox (caution: CO evolution). The organic products were extracted with diethyl ether, dried with magnesium sulfate, and concentrated on a spinning evaporator. Separation from the residual iron by-products was achieved by elution on a $20 \times 20 \times 0.1$ cm preparative TLC plate with 8:1 hexane/diethyl ether to give 0.140 mg of 2-decalone (91%). GLC analysis^{62a} (column E, 220 °C) showed cis:trans, 87:13. The cis peak was coinjected with authentic cis-2decalone.

2. Reductions without Isolation. Yields in Table II were determined by GLC using internal standard and were corrected for molar responses. Products were identified by coinjection of authentic materials. Generally, 1-2 mmol of Na₂Fe(CO)₄-1.5dioxane in 10 mL of dioxane was used. The amount of Fe(CO)₅, acid, and substrate is given in Table II.

G. Kinetic Procedures, 1. GLC Kinetics. Substrate Reduction. The kinetic procedure for the reduction of *trans*-ethyl crotonate with NaHFe₂(CO)₈ and HOAc will be presented as a typical example. In the drybox, 20.0 mL of homogeneous 0.10 M NaHFe₂(CO)₈ containing 0.0056 M nonane was transferred to a 25-mL Erlenmeyer flask

which was subsequently sealed with a serum stopper and thermostated to 25.0 °C. Via tubing attached to a syringe needle, the flask was attached to a nitrogen bubbler and kept under a slight positive nitrogen pressure. The kinetic run was initiated by simultaneous injection of 0.025 mL of ethyl crotonate (0.010 M) and 0.100 mL of HOAc (0.098 M) and vigorous swirling. Nine 0.20-mL aliquots, covering 0-90% reaction, were removed and quenched by injecting them, via gas-tight syringe, into N₂-filled, serum-stoppered vials containing 0.010 mL of dimethyl maleate (0.40 M) and 0.005 mL of HOAc (0.53 M). The samples were simultaneously analyzed for product, reactant, and nonane internal standard by flame ionization GLC (column A, 90 °C), giving two values for the rate constant for each run. Quantification was generally accomplished using peak heights, although identical results were obtained using a Vidar 6300 digital integrator or cut and weigh analysis. These GLC rate constants are precise to $\pm 15\%$.

2. IR Kinetics. Substitution of NaHFe₂(CO)₈ with PPh₃. To determine [NaHFe₂(CO)₈] at time = 0, the absorbance of the 1770-cm⁻¹ band of a 0.080 M homogeneous NaHFe₂(CO)₈ solution in THF was measured using solution IR cells equipped with CaF₂ windows separated by 0.1-mm amalgamated lead spacers. The reaction was initiated by injection with a gas-tight syringe of 10.0 mL of the NaHFe₂(CO)₈ solution on to 1.048 g of PPh₃ (4.0 mmol) in a N₂-filled serum stopper Erlenmeyer thermostated to 25.0 °C, followed by agitation to ensure mixing. The concentration of NaHFe₂(CO)₈ was determined from the absorbance of the 1770-cm⁻¹ peak. This was done by injecting aliquots of the reaction solutions into the N₂-purged, serum-stoppered, clean IR cells. The time was recorded as the 1770-cm⁻¹ peak was traced. Nine kinetic points were determined in this manner, over 82% reaction.

3. ¹H NMR Kinetics. (a) Decomposition of NaHFe₂(CO)₈. A typical procedure to measure the rate of decomposition is as follows. To determine [NaHFe₂(CO)₈] at time = 0, 0.5 mL of a homogeneous 0.10 M NaHFe₂(CO)₈ solution containing 0.019 M benzene was placed in a sealed NMR tube. The decomposition was initiated by addition of 0.125 mL of HOAc (0.436 M) to 5.0 mL of the remaining NaH-Fe₂(CO)₈ solution. The concentration of NaHFe₂(CO)₈ was measured at various times by ¹H NMR by comparing the peak heights of the NaHFe₂(CO)₈ and the benzene standard. Both the hydride and benzene peak heights were measured three times per kinetic point. Between ¹H NMR measurements, the ¹H NMR tube was stored at 25.0 °C. Eight kinetic points were measured and the decomposition was followed to 77% completion.

(b) Rate of Ethyl Crotonate Reduction. Using the techniques described, 0.295 mL of 0.20 \pm 0.02 M homogeneous NaHFe₂(CO)₈ containing 0.028 M benzene was prepared in THF-d₈ and transferred to a ¹H NMR tube. After sealing with a serum stopper and equilibrating in the probe (at 25 \pm 1 °C) of a Varian XL-100 NMR spectrometer, the reduction was initiated by injecting 0.0020 mL of HOAc (0.12 M) and 0.0073 mL of ethyl crotonate (0.20 M) and shaking. The concentration of product and reactant was determined by comparing the peak height of the benzene standard with the peak height of the center triplet at 0.87 ppm (ethyl butyrate) and the doublet at 1.83 ppm (ethyl crotonate). Eight kinetic points were determined in this manner over 82% reaction.

(c) Rate of Cleavage of $(PPN)^+[CH_3CH(Fe(CO)_4)CO_2Et]^-$ with HOAc. The rate of cleavage of $(PPN)^+[CH_3CH(Fe(CO)_4)CO_2Et]^-$ with HOAc to form ethyl propionate was monitored by ¹H NMR using a 0.125 M solution of the complex in THF-d₈, prepared from 0.040 g of isolated $(PPN)^+[CH_3CH(Fe(CO)_4CO_2Et]^-$ and 0.40 mL of THF-d₈. After equilibration of the sample to 35 °C in the ¹H NMR probe, the concentration of the complex at time = 0 was measured. The reaction was initiated by injection of 0.0050 mL of HOAc (0.22 M). The concentration of iron complex was determined by comparison of the peak height of the doublet (δ 1.5) due to the complex with the peak height of the reaction was followed to 56% completion.

4. Experiments under Constant CO Pressure. CO Uptake. A hydrogenation apparatus modeled after the constant-pressure apparatus developed by $Madon^{92}$ was filled with CO at 1 atm. To the water-jacketed reaction vessel, thermostated to 25.0 °C, was added 0.050 mL (0.88 mmol) of HOAc followed by 10 mL of 0.10 M homogeneous $NaHFe_2(CO)_8$ in THF. The solution was stirred rapidly to ensure proper mixing and the CO uptake at 1 atm pressure was measured as a function of time. The same apparatus was used to determine the CO dependence of the reduction of ethyl crotonate.

5. Analysis of Kinetic Data. Rate constants for kinetic data, obtained

under pseudo-first-order conditions, were found by least-squares fit using two basic equations, one for the loss of reactant and one for the formation of product, where

$$\ln R_0/R_t = k_1 t$$

$$\ln P_{\infty}/(P_{\infty}-P_{I})=k_{1}t$$

 R_0 = reactant concentration at time = 0, R_i = reactant concentration at time = t, P_{∞} = product concentration at >10 half-lives, and P_i = product concentration at time = t. Data for the rate of NaHFe₂(CO)₈ decomposition (¹H NMR kinetics) and substrate reduction (GLC kinetics) were treated in this way. For kinetic data obtained for substitution of NaHFe₂(CO)₈ by PPh₃ (IR kinetics) and substrate reduction (¹H NMR kinetics), rate constants were determined by plotting concentration of reactant or product vs. time, measuring the initial rate for loss of reactant or formation of product, and dividing the initial rate by the initial concentrations. Further details on the treatment of kinetic data can be found in the text.

H. Stoichlometry. 1. Reduction in the Absence of Acid. A homogeneous 0.01 M NaHFe₂(CO)₈ in THF was prepared containing 0.014 M benzene, 0.077 M hexane, and 0.028 M nonane. To 4 mL of this solution was added 0.200 mL of ethyl crotonate (0.40 M), the reaction flask was covered with aluminum foil (to prevent Fe(CO)₅ + $h\nu \rightarrow$ Fe₂(CO)₉) and allowed to stand overnight. The following components were analyzed.

(a) Fe(CO)₅: GLC (column D, 40 °C) showed 0.028 \pm 0.004 M Fe(CO)₅ using hexane as an internal standard and correcting for molar responses.

(b) NaHFe₂(CO)₈: ¹H NMR analysis showed no NaHFe₂(CO)₈ (δ 8.47).

(c) NaHFe(CO)₄: ¹H NMR analysis showed no NaHFe(CO)₄ (δ 8.74).

(d) NaHFe₃(CO)₁₁: ¹H NMR analysis showed 0.024 \pm 0.003 M NaHFe₃(CO)₁₁ (δ 14.87) by comparing the peak heights for benzene and the hydride. The hydride peak was multiplied by a 1.14 correction factor, which was determined independently from a known solution of [Et₃NH][HFe₃(CO)₁₁], THF, and benzene. After acid quench, the amount of NaHFe₃(CO)₁₁ rose to 0.035 \pm 0.005 M.

(e) $Fe_3(CO)_{12}$: a sample of solution was examined by visible spectroscopy for an absorption at 6050 Å. None was found.

(f) Organic products: the sample was quenched with 0.080 mL of HOAc (0.45 M) and 0.080 mL of dimethyl maleate (0.14 M) and analyzed by GLC (column A, 90 °C), correcting for molar responses. Comparison of the peak heights of the nonane standard with the organic products showed 0.057 M ethyl butyrate, 0.032 M *cis*-ethyl crotonate, and 0.271 M *trans*-ethyl crotonate.

(g) Na₂Fe₃(CO)₁₁: in a separate experiment, 20 mL of 0.10 M NaHFe₂(CO)₈ was treated with 0.180 mL of methyl acrylate (0.20 M). After 5.5 h, 1.148 g of PPN+Cl⁻ (2.0 mmol) was added. The THF was removed in vacuo, 10 mL of acetone was added, and the solution was filtered. Addition of 7 mL of diethyl ether resulted in the formation of deep red crystals identified as (PPN)₂(Fe₃(CO)₁₁), 5% yield: ν_{max} (KBr) 1933 (s), 1897 (s), 1883 cm⁻¹ (sh) (lit.⁹³ (DMF) 1941 (s), 1913 (m), 1884 cm⁻¹ (w)).

Anal. Calcd for C₈₃Fe₃H₆₀N₂O₁₁P₄: C, 64.20, H. 3.88; N. 1.80. Found: C, 63.79; H, 3.97; N, 1.72.

2. PPh₃ Substitution of NaHFe₂(CO)₈. To 0.300 g of PPh₃ (1.15 mmol) was added 5.0 mL of homogeneous 0.10 M NaHFe₂(CO)₈ in THF, which contained 0.014 M benzene and 0.077 M hexane. After 12 h, the following components were analyzed.

(a) $Fe(CO)_5$: 0.04 ± 0.01 M by GLC as described.

(b) Fe(CO)₄L: an aliquot was injected into nitrogen-purged serum stoppered solution IR cells (CaF₂, 0.1 mm amalgamated lead spaces) and the absorbance of the 2055-cm⁻¹ band due to Fe(CO)₄PPh₃ was measured (ϵ 2200 L mol⁻¹ cm⁻¹, measured independently). Although Fe(CO)₅ interfered with this determination, the amount of Fe(CO)₄L was found to be 0.022 \pm 0.006 M.

(c) NaHFe(CO)₄: ¹H NMR analysis showed NaHFe(CO)₄ (δ 8.74) to be the only iron hydride present. The amount of NaHFe(CO)₄ could not be quantified with the benzene standard owing to the triphenylphosphine phenyl protons. In a separate experiment with methylcyclohexane used as a standard, the amount of NaHFe(CO)₄ was found to be 0.10 ± 0.05 M.

(d) NaHFe(CO)₃PPh₃: in a separate experiment, the substitution of 0.2 M NaHFe₂(CO)₈ by 0.4 M PPh₃ was monitored by ¹H NMR (methylcyclohexane standard). The singlet due to NaHFe₂(CO)₈ (δ 8.47) was found to decrease smoothly as the singlet due to NaH- $Fe(CO)_4$ (δ 8.74) grew in. At no time was the doublet (δ 9.39, J = 43Hz) due to NaHFe(CO)₃L observed.

(e) $Fe(CO)_{3}L_{2}$: filtration of the solution gave 0.121 g of Fe- $(CO)_3(PPh_3)_2$ (0.18 mmol, which corresponds to 0.038 M), ν_{max} (KBr) 1870 cm⁻¹ (lit.⁹⁴ 1884.8 cm⁻¹).

Anal. Calcd for C₅₇FeH₄₅O₃P₃: C, 69.38; Fe, 8.06; H, 4.33; P, 8.96. Found: C, 70.12; Fe, 8.11; H, 4.62; P, 8.70.

I. Substitution of NaHFe(CO)₄ with PPh₃. 1. No HOAc. The hydride resonance of 0.50 mL of homogeneous 0.10 M NaHFe(CO)4 solution containing 0.20 M PPh₃ and 0.45 M benzene was monitored by ¹H NMR. No change was observed over 3 h.

2. With HOAc. To the above solution was added 0.010 mL of HOAc (0.35 M). The singlet due to NaHFe(CO)₄ decreased and a doublet $(\delta 9.39, J = 43 \text{ Hz})$ grew in (due to NaHFe(CO)₃L formation) which reached a maximum within 4 min. Subsequently, this doublet decreased with time and was virtually gone in 15 min. Hydrogen was identified above a similar solution by GLC (column F, -198 °C).

J. Preparation of Na[CH₃CH₂CH(Fe(CO)₄)CO₂Et], To 4.0 mL of homogeneous 0.20 M NaHFe(CO)4 in THF was added 0.124 mL of ethyl crotonate (0.25 M). Heating for 12 h in a 40 °C oil bath yielded a homogeneous orange solution of Na[CH₃CH₂CH(Fe(CO)₄)-CO₂Et]: v_{max} (THF) 1665 cm⁻¹; NMR and ¹³C NMR data as presented in Tables III and IV.

K. ¹³CO Exchange with NaHFe₂(CO)₈ and NaHFe(CO)₄. To each of three ¹³C NMR tubes were added 2.5 mL of homogeneous 0.20 M $NaHFe_2(CO)_8$, 0.500 mL of benzene- d_6 , and 0.100 mL of Me₄Si. Two other ¹³C NMR tubes were similarly prepared with 0.20 M NaHFe(CO)₄. One sample each of NaHFe₂(CO)₈ and NaHFe(CO)₄ were used as blanks, and one sample each was thermostated to 25.0 °C and bubbled with 20% 13 CO for 3.0 min followed by N₂ for 3.0 min. Immediately before bubbling, 0.062 mL of ethyl crotonate (0.50 mmol) was added to the third sample of $NaHFe_2(CO)_8$. The flow rates for ¹³CO and N₂ were kept constant for all samples, and the samples were stored in a dry ice bath between manipulations. ¹³C NMR data was collected in an identical manner for each, using 4K transients (acquisition time 0.533 s, flip angle about 55°) over a spectrum width of 7500 Hz to give a data table and Fourier transform length of 8192. Probe temperature was kept at -40 to -50 °C. The resulting spectra were plotted in the absolute intensity mode (Hz/point = 1.88). The height of the M - CO absorbance was maximized before plotting

L. Olefin Cis/Trans Isomerization. To 5.0 mL of homogeneous 0.10 M NaHFe₂(CO)₈ was added 0.064 mL of cis-3-hexene. The amounts of cis- and trans-3-hexene were analyzed at various times by GLC (column C, 25 °C).

M. Equivalent Conductance vs. Dilution, Six serial dilutions of an originally 0.10 M NaHFe₂(CO)₈ solution in THF were made in the drybox, yielding the most dilute solution at $(0.10/64) = 1.56 \times 10^{-3}$ M. Starting with the most dilute solution, the conductance at each dilution was measured.

N. Deuterium Labeling Studies, Samples for GC-mass spectral analysis were prepared by reducing 0.05 \dot{M} solutions of substrate with homogeneous 0.20 M NaDFe2(CO)8 and 0.10 M CD3CO2D. Aliquots were quenched at appropriate times using dimethyl maleate and CD₃CO₂D as described for GLC kinetics. Samples were separated by GC (column G) and analyzed by their mass spectra (source voltage, 20 eV; source temperature, 175 °C; filament current, 100 µA).

O. Reaction of Fe(CO)₄(ethyl cinnamate) with NaHFe(CO)₄ and HOAc. To a solution of 0.1 M NaHFe(CO)4 and 0.1 M HOAc was added 1 mmol of $Fe(CO)_4$ (ethyl cinnamate). The solution rapidly discolored. No high initial yield of ethyl dihydrocinnamate was observed. Instead, ethyl dihydrocinnamate was formed in about the same yield and rate as was formed from 0.1 M NaHFe₂(CO)₈, 0.1 M HOAc, and 0.1 M ethyl cinnamate.

P. Reaction of NaHFe(CO)₄, Fe(CO)₄(PPh₃), and PPh₃. A THF solution containing 0.20 M NaHFe(CO)₄, 0.20 M Fe(CO)₄(PPh₃), 0.20 M PPh₃, and 0.12 M Me₄Si was examined by ¹H NMR over the course of 4 h. No changes in intensity or position of the NaHFe(CO)₄ resonance or the resonances due to the phenyl protons in the Fe(CO)₄PPh₃ and the PPh₃ were observed. The solution remained pale yellow throughout.

Acknowledgment. We wish to thank Dr. L. M. Hjelmeland for assistance with the GLC-mass spectral studies and Dr. B.

Tovrog for help with the ESR studies. This work was supported by National Science Foundation Grant CHE75-17018.

References and Notes

- (1) For reviews of transition metal carbonyl clusters see (a) R. B. King, Prog. For reviews of transition metal carbonyl clusters see (a) R. B. King, *Prog. Inorg. Chem.*, **15**, 287 (1972); (b) P. Chini, *Inorg. Chim. Acta Rev.*, **2**, 31 (1968); (c) E. W. Abel and F. G. A. Stone, *Q. Rev., Chem. Soc.*, **23**, 325 (1969); (d) M. C. Baird, *Prog. Inorg. Chem.*, **9**, 1 (1968); (e) R. D. Johnston, *Adv. Inorg. Chem. Radlochem.*, **13**, 471 (1970); (f) S. C. Tripathi, S. C. Srivastava, R. P. Mani, and A. K. Shrimal, *Inorg. Chim. Acta Rev.*, **17**, 257 (1976); (g) F. A. Cotton, *Q. Rev., Chem. Soc.*, **20**, 389 (1966); (h) P. Chini, (1976); (g) F. A. Cotton, *U. nev., Chem. Soc., 29*, 365 (1966), (n) F. Chimi, G. Longoni, and V. G. Albano, *Adv. Organomet. Chem.*, 14, 285 (1976);
 (i) P. Chini, *Pure Appl. Chem.*, 23, 489 (1970); (j) B. P. Biryukov and Yu. T. Struchkov, *Russ. Chem. Rev. (Engl. Transl.)*, 39, 789 (1970).
 (2) (a) E. L. Muetterties, "Transition Metal Hydrides", Marcel Dekker, New York, N.Y., 1971; (b) H. D. Kaesz and R. B. Saillant, *Chem. Rev.*, 72, 231 (1972);
 (c) H. D. Kaesz, *Chem. Br.*, 9, 344 (1973); (d) J. P. McCue, *Coord. Chem. Bea.* (1973).
- Rev., 10, 265 (1973).
- K. Wade, Chem. Br., 11, 177 (1975), and references cited therein; Adv. Inorg. Chem. Radiochem., 18, 1 (1976); R. N. Grimes, Ann. N.Y. Acad. Sci., 239, 180 (1974); R. W. Rudolph. Acc. Chem. Res., 9, 446 (1976).
 (4) Recent reports of new clusters include (see also ref 5b-e) (a) G. Longoni,
- P. Chlni, L. D. Lower, and L. F. Dahl, J. Am. Chem. Soc., 97, 5034 (1975); (b) J. C. Calabrese, L. F. Dahl, A. Cavalieri, P. Chini, G. Longoni, and S. Martinengo, Ibid., 96, 2616 (1974); (c) J. C. Calabrese, L. F. Dahl, P. Chini, G. Longoni, and S. Martinengo, *Ibid.*, 96, 2614 (1974); (d) R. S. Gall, N. G. Connelly, and L. F. Dahl, *ibid.*, 96, 4017 (1974); (e) R. C. Ryan and L. F. Dahl ibid., 97, 6904 (1975); (f) O. M. Abu Salah and M. I. Bruce, J. Chem. Soc., Chem. Commun., 858 (1972); (g) R. J. Klingler, W. Butler, and M. D. Curtis, J. Am. Chem. Soc., 97, 3535 (1975); (h) J. G. Albano, A. Ceriotti, P. Chini, G. Clani, S. Martinengo, and W. M. Anker, J. Chem. Soc., Chem. Commun., 859 (1975); (i) C. R. Eady, B. F. G. Johnson, J. Lewis, B. E. Reichert, and G. M. Sheldrick, *ibid.*, 271 (1976); (j) J. L. Davldson, M. Green, F. G. A. Stone, and A. J. Welch, *J. Am. Chem. Soc.*, **97**, 7490 (1975); (k) V. W. Day, R. O. Day, J. S. Kristoff, F. J. Hirsekorn, and E. L. Muetterties, *ibid.*, **97**, 2571 (1975); (I) J. R. Shapley, J. B. Keister, M. R. Churchill, and B. G. DeBoer, *ibid.*, **97**, 4145 (1975); (m) M. I. Bruce, G. Shaw, and F. G. A. Stone, *J.* Chem. Soc., Chem. Commun., 1288 (1971); (n) J. Chem. Soc., Dalton Trans., 1082 (1972).
- (a) L. M. Jackman and F. A. Cotton, "Dynamic Nuclear Magnetic Resonance (5) Spectroscopy", Academic Press, New York, N.Y., 1975, Chapter 12; (b) Other recent studies of the fluxionality of metal carbonyl clusters include A. Forster, B. F. G. Johnson, J. Lewis, T. W. Matheson, B. H. Robinson, and W. G. Jackson, *J. Chem. Soc., Chem. Commu*n., 1042 (1974); (c) J. Lewis, B. F. G. Johnson, C. R. Eady, W. G. Jackson, and T. W. Matheson, *ibid.*, 958 (1975); (d) L. M. Lone, S. Aime, E. W. Radall, and L. W. Mathesol, *ibid.*, 355 (1975); (e) C. R. Eady, B. F. G. Johnson, and J. Lewis, *ibid.*, 302 (1976); (f)
- F. A. Cotton and J. D. Jamerson, *J. Am. Chem. Soc.*, **98**, 1273 (1976). The situation in 1966 according to Cotton ¹⁹ is only slightly improved today. (6) 'There does not yet appear to be any instance in which a synthetic reaction (or series of reactions) was deliberately designed to produce a particular cluster compound from mononuclear starting materials. On the contrary, all known clusters were discovered by chance or prepared unwittingly. Thus the student of cluster chemistry is in somewhat the position of the collector of lepIdoptera or meteorites, skipping observantly over the countryside and exclaiming with delight when fortunate enough to encounter a new specimen.
- (7) The chemical reactivity of H2Os3(CO)10 has received considerable attention recently: (a) J. B. Keister and J. R. Shapely, *J. Am. Chem. Soc.*, **98**, 1056 (1976); (b) M. Tachikawa, J. R. Shapely, and C. G. Pierpont, *Ibid.*, **97**, 7172 (1975), and references cited therein; (c) M. R. Churchill, B. G. DeBoer, J. R. Shapely, and J. B. Keister, ibid., 98, 2357 (1976); (d) A. J. Deeming, S. Hasso, and M. Underhill, J. Chem. Soc., Dalton Trans., 1614 (1975); (e) J. B. Keister and J. R. Shapley, *J. Organomet. Chem*, **85**, C29 (1975), and references cited therein; (f) A. J. Deeming and S. Hasso, *ibid.*, **88**, C21 (1975); (g) W. G. Jackson, B. F. G. Johnson, J. W. Kelland, J. Lewis, and K. T. Schorpp, *ibid.*, **87**, C27 (1975); (h) W. G. Jackson, B. F. G. Johnson, J. W. Kelland, J. Lewis, and K. T. Schorpp, *Ibid.*, 88, C17 (1975); (i) E. G. Bryan, B. F. G. Johnson, J. W. Kelland, and J. Lewis, J. Chem. Soc., Chem. Commun., 254 (1976).
- For recent studies of the chemistry of Os₃(CO)₁₂ see (a) G. Gervasio, J. Chem. Soc., Chem. Commun., 25 (1976); (b) M. G. Thomas, B. F. Beier, and E. L. Muetterties, J. Am. Chem. Soc., 98, 1296 (1976); (c) C. W. Bradford and R. S. Nyholm, *J. Chem. Soc., Dalton Trans.*, 529 (1973); (d) A. J. Deeming and M. Underhill, *J. Organomet. Chem.*, **42**, C60 (1972); (e) A. J. Deeming and M. Underhill, *J. Chem. Soc., Chem. Commun.*, 277 (1973)
- Other cluster reactions include (a) the reactions of a molybdenum-mo-(9) lybdenum triple bond: R. J. Klinger, W. Butler, and M. D. Curtis, J. Am. Chem. Soc., 97, 3535 (1975). (b) The reaction of Ru₃(CO)₁₂ and cyclo-hexa-1,3-diene: T. H. Whitesides and R. A. Budnik, J. Chem. Soc., Chem. Commun., 87 (1973). (c) The oxidation of ketones using "Rh₆(CO),₁₆": G. D. Mercer, J. S. Shu, T. B. Rauchfuss, and D. M. Roundhill, *J. Am. Chem.* Soc., **97**, 1967 (1975). (d) The reduction of α , β -unsaturated carbonyl and initial compounds using CO, H₂O, and Rh₆(CO)₁₈: T. Kitamura, N. Sakamoto, and T. Joh, *Chem. Lett.*, 379 (1973). (e) See also the articles cited in footnotes 90, 91, and 93 of ref 11.
- (10) For mechanistic studies of the ligand substitution reactions involving carbonyl clusters see (a) K. J. Karel and J. R. Norton, J. Am. Chem. Soc., 96, 6812 (1974); (b) D. DeWitt, J. P. Fawcett, A. J. Poë, and M. V. Twigg, Coord, Chem. Rev., 8, 81 (1972), and references cited therein; (c) A. Poë and M. V. Twigg, J. Chem. Soc., Dalton Trans., 1860 (1974), and references cited therein; (d) J. P. Fawcett, A. J. Poe, and M. V. Twigg, J. Chem. Soc., Chem.

Commun., 267 (1973); (e) J. P. Fawcett, R. A. Jackson, and A. Poe, *ibid.*, 733 (1975).

- (11) E. L. Muetterties, Bull. Soc. Chim. Belg., 84, 959 (1975).
- (12) G. Henrich-Olivé and S. Olivé, Angew. Chem., Int. Ed. Engl., 15, 136 (1976);
 H. H. Storch, N. Golumbic, and R. B. Anderson, "The Fischer-Tropsch and Related Syntheses", Wiley, New York, N.Y., 1951.
 M. Ichikawa, J. Chem. Soc., Chem. Commun., 11 (1976); J. R. Anderson,
- (13)B. J. Macdonald, and Y. Shimoyama, J. Catal., 20, 147 (1971).
 J. M. Dartigues, A. Chambellan, and F. G. Gault, J. Am. Chem. Soc., 98,
- (14)856 (1976).
- (15) M. Boudart, "Effects of Surface Structure on Catalytic Reactivity", a preprint
- (16)T. J. Meyer, Prog. Inorg. Chem., 19, 1 (1975). However, problems resulting from weak metal-metal bonds may be minimized by the use of third-row transition metals
- D. L. Morse and M. S. Wrighton, J. Am. Chem. Soc., 98, 3931 (1976), and (17)references cited therein; D. S. Ginley and M. S. Wrighton, ibid., 97, 4908
- (1975); M. S. Wrighton, *Top. Curr. Chem.*, **65**, 37 (1976).
 (a) E. L. Muetterties, B. A. Sosinsky, and K. I. Zamaraev, *J. Am. Chem. Soc.*, **97**, 5299 (1975); (b) J. P. Fawcett, R. A. Jackson, and A. Poë, *J. Chem. Soc.*, (18)Chem. Commun., 733 (1975). There are two reports^{8b,20} of what *appear* to be cluster catalysis of the
- (19)Fischer-Tropsch reaction. However, the actual catalytically active species in these reports is still uncertain.
- (20) Chemtech, 732 (1976), and references cited therein.
- (21) (a) J. P. Collman, R. G. Finke, P. L. Matlock, and J. I. Brauman, J. Am. Chem. Soc., 98, 4685 (1976); (b) J. P. Collman, Acc. Chem. Res., 8, 342 (1975).
- Commercially available from Alfa-Ventron Corp. PPN⁺ = bis(triphenylphosphine)iminium cation. J. K. Ruff, *Inorg. Chem.*, 1231 7, 1818 (1968); J. K. Ruff and W. J. Schlientz, Inorg. Synth., 15, 84 (1974).
- (24) H. B. Chin, Ph.D. Thesis, University of Southern California, Los Angeles, Calif., 1975. (25) H. B. Chin, M. B. Smith, R. D. Wilson, and R. Bau, J. Am. Chem. Soc., 96,
- 5285 (1974).
- H. M. Powell and R. V. G. Ewens, J. Chem. Soc., 286 (1939).
 R. M. Fuoss and F. Accascina, "Electrolytic Conductance", Interscience, New York, N.Y., 1959, Chapter 18.
 J. P. Collman, R. G. Finke, P. L. Matlock, and J. I. Brauman, unpublished
- results
- (29) (a) J. P. Collman, R. G. Finke, J. N. Cawse, and J. I. Brauman, unpublished results; (b) J. P. Collman, J. N. Cawse, and J. I. Brauman, J. Am. Chem. Soc., 94, 5905 (1972).
- (30) W. F. Edgell, M. T. Yang, and N. Koitzumi, J. Am. Chem. Soc., 87, 2563 (1965).
- (31) M. Y. Darensbourg, D. J. Darensbourg, D. Burns, and D. A. Drew, J. Am. Chem. Soc., 98, 3127 (1976).
- (32) The total conductance is given by27

$\Lambda = \Lambda_0 \alpha + \lambda_0 \alpha_3$

where Λ_0 and λ_0 are the molar conductivities at infinite dilution of disso-ciated NaHFe₂(CO)₈ and [Na⁺HFe₂(CO)₈⁻]Na⁺]⁺ plus [HFe₂(CO)₈⁻-(Na⁺)HFe₂(CO)₈⁻]⁻ triple ions, respectively. Also, α is the degree of dis-sociation of NaHFe₂(CO)₈ while α_3 is the degree of *association* of the triple ions. For conditions where few triple ions and dissociated ions are formed relative to ion pairs (i.e., α and $\alpha_3 \ll$ 1), Λ is given by (C = the initial [NaHFe2(CO)8])

$$\Lambda = \Lambda_0 (K_0/C)^{1/2} + \lambda_0 (CK_0)^{1/2} / K_{TO} \text{ (for } \alpha, \alpha_3 \ll 1)$$

Multiplying this equation by $C^{1/2}$ gives

$$\Lambda C^{1/2} = \Lambda_0 (K_0)^{1/2} + \lambda_0 (C) (K_0)^{1/2} / K_{TO}$$

Thus from a plot of $\Lambda {\cal C}^{1/2}$ vs. ${\cal C}$ given the values of Λ_0 and $\lambda_0,$ ${\cal K}_{TD}$ and ${\cal K}_0$ can be determined. Order of magnitude values of $K_{\rm TO}$ and K_0 , $K_{\rm TO}$ and K_0 determined by this method using the $\Lambda C^{1/2}$ vs. C data near $C = 10^{-2}$ M, where a posteriori calculations show α and $\alpha_3 < 0.2$. A value of Λ_0 equal to 0.09 mho/(M cm), and the usual assumption, $^{27} \lambda_0 = \frac{1}{3} \Lambda_0$, have been used. It should be noted that this treatment makes the usual but untested assumption that the dissociation constant, K_{TO} , is the same for positive and negative triple ions. Also, K_0 and K_{T0} are composite equilibrium constants because of the presence of solvent-separated ion pairs. For example, $K_0 = K_1 K_2 / (1 + K_1)$ where

NaHFe₂(CO)₈ $\stackrel{K_1}{\longleftrightarrow}$ Na⁺:S:HFe₂(CO)₈ (S = solvent)

Na⁺:S:HFe₂(CO)₈⁻ $\xrightarrow{\kappa_2}$ Na⁺ + HFe₂(CO)₈⁻

- (33) D. F. Shriver and Sr. Agnes Alich, *Coord. Chem. Rev.*, 8, 15 (1972).
 (34) (a) M. Szwarc, Ed., "lons and lon Pairs in Organic Reactions", Vol. 1, Wiley-Interscience, New York, N.Y., 1972; (b) ibid., Chapter 4; (c) ibid., Vol. 2. 1974.
- (35) J. P. Collman, R. G. Finke, J. N. Cawse, and J. I. Brauman, J. Am. Chem. Soc., 99, 2515 (1977).
- (36) For 0.2 M trans-CH₃CH₃CHCCO₂Et, 0.2 M NaHFe₂(CO)₈, and 0.12 M HOAC the measured yields were 0.44 equiv CH₃CH=CHCO₂Et consumed and 0.52 equiv of CH₃CH₂CO₂Et and 0.57 equiv of NaHFe₃(CO)₁₁ formed. In a separate experiment, Fe(CO)5 (43%) was observed in GLC.
- (37) (a) J. P. Collman and W. O. Siegl, unpublished results. (b) A variety of RFe(CO)₄⁻ compounds, including [Fe(CO)₄CH₂CO₂Et]⁻, have been pre-viously isolated as their PPN⁺ salts: W. O. Siegl and J. P. Collman, *J. Am.* Chem. Soc., 94, 2516 (1972).
- (38) For the reaction of 0.20 M NaHFe2(CO)₈ and 0.20 M ethyl crotonate in THF-d₈ (entry 6, Table V), after all the NaHFe₂(CO)₈ (1 equiv) had been

consumed, NMR analysis showed 0.6 equiv of Na⁺[CH₃CH₂CH/Fe-(CO)₄)CO₂Et]⁻, which was converted to 0.6 equiv of CH₃CH₂CH₂CO₂Et by acid. Analysis of the products for the reaction between 0.10 M NaH- $Fe_2(CO)_8$ and 0.40 M ethyl crotonate showed 0.28 \pm 0.04 equiv of Fe(CO)₅ and 0.24 \pm 0.03 equiv of NaHFe₃(CO)₁₁. After acid quench, 0.35 \pm 0.05 and 0.24 ± 0.03 equiv of NaHFe3(CO)11. After a clid querion, 0.35 equiv of NaHFe3(CO)11 was found, along with 0.57 equiv of ethyl butyrate, 0.32 equiv of *cis*=ethyl crotonate, and 2.71 equiv of *trans*-ethyl crotonate. The increase in NaHFe₃(CO)₁₁ after acid quench suggests that 0.1 equiv The increase in Nari e₃(CO)₁₁ are acting due to the HOAc addition (separately, $(PPN)_2Fe_3(CO)_{11}$ was separated in 5% yield from 0.1 M NaHFe₂(CO)₈ and 0.1 M ethyl acrylate). These yields account for 98% of the CO initially present and 99% of the iron. No Fe₃(CO)₁₂ was observed.

- For pseudo-first-order reactions with NaHFe₂(CO)₁₂ was observed. In (R_0/R_1) vs. time plots ($R = [trans-CH_3CH=CHCO_2Et]$) curved up with time indicating that the reaction went faster with time than expected for a first-order reaction. Linear plots for orders X(X = 0.4-0.6) of $[R_1]^{-X+1}$ (39) vs. time were obtained under these conditions. However, these reactions are clearly first order [*trans*-CH₃CH=CHCO₂Et] (Figure 8) and not 0.4–0.6 time. Excess HOAc has the opposite effect, causing ln (R_0/R_1) vs. time plots to curve down since [NaHFe₂(CO)₈] is not constant but is decreasing due to an HOAc-dependent decomposition mechanism. Thus it appears that the ln (R_0/R_l) vs. time plots for NaHFe₂(CO)₈ in excess with 0.088 M HOAc present are fortuitously linear within experimental error (Figure 7) owing to these opposing effects.
 J. Kwiatek, *Catal. Rev.*, 1, 37 (1967).
- (41) The stereochemistry of overall hydrogen additions to α , β -unsaturated carbonyl compounds can be determined by the use of maleic and fumaric acids or their esters, and deuterium. IR analysis can be used to distinguish between the resulting meso vs. *dl* products.⁴² The isolated dimethyl succinate product from the reaction of 0.08 M NaDFe2(CO)8, 0.07 M dimethyl maleate, and 0.16 M DOAc gave an IR indistinguishable from a similar reaction using dimethyl fumarate. However, the rapid maleate to fumarate isomerization and the formation of dideuterio- $CH_3O_2CCD_2CX_2CO_2CH_3$ (X = H or D) complicate the interpretation of these results.
- (42) C. R. Childs, Jr., and K. Bloch, J. Org. Chem., 26, 1630 (1961)
- (43) The activation parameters are consistent with this reaction being CO(gas) → CO(solution); ΔH[#] = 6.0 ± 0.2 kcal/mol and ΔS[#] = 56 ± 5 eu (stan-dard state = M/s⁻¹), determined at five temperatures in the range of 4.6-50.2 °C. Error bars represent one standard deviation from the least-
- squares analysis. (44) The ¹³CO ¹³C NMR resonance peak height of NaHFe₂(CO)₈ using exactly the same ¹³C NMR parameters (e.g., acquisition time, number of transients, etc.) was reproducible to within ± 10 %; thus a 20% or more increase in the ¹³C NMR resonance corresponding to ≥ 1.1 % CO exchange would have (45) The ¹³C CO resonance of iron carbonyls is relatively insensitive to the nature
- of the iron compound but sensitive to the oxidation state of iron. For example, the ¹³C CO resonances of 0.1 M NaHFe₂(CO)₈ and 0.5 M NaH-Fe(CO)₄ in THF and 0.5 M Na₂Fe(CO)₄ in N-methylpyrrolidinone occur at 222, 223, and 232 ppm downfield from Me₄Si, respectively, at ambient temperature
- (46) The actual ratios observed by ¹H NMR were for every 3.0 equiv of NaH-Fe2(CO)8 consumed, 2.0 equiv of NaHFe(CO)4, 1.0 equiv of NaHFe3(CO)11,
- For every 1.0 equiv of NaHFe₂(CO)₅ (has analysis) were produced. For every 1.0 equiv of NaHFe₂(CO)₅ (has an every 1.0 equiv of NaHFe₂(CO)₅ that was consumed, 0.50 equiv of NaHFe₃(CO)₁₁ and 0.50 equiv of Fe(CO)₅ were observed within a 10% error. The presence of H₂ was verified by GLC analysis. (47)
- (48) (a) Slurries of Na₂Fe(CO)₄-1.5dioxane and HOAc in dioxane slowly turn red with H₂ evolution. After centrifugation, IR analysis shows that NaH-Fe₃(CO)₁₁ is present. However, this supernatant has a *trans*-CH₃CH=CHCO₂Et reducing power of $< 10^{-3}$ M. Protonation of a slurry of isolated Na₂Fe₂(CO)₈ in dioxane with HOAc leads to rapid H₂ evolution to yield a red solution which contains NaHFe3(CO)11 and NaHFe(CO)4 but has low reducing power. Reductions in dioxane using Na₂Fe(CO)₄-1.5dioxane, Fe(CO)₅, and HOAc are subject to severe CO inhibition which is removed by flushing with nitrogen. (b) Initial reductions by NaHFe(CO)₄ or its decomposition could yield $Fe(CO)_4$, which could then combine with NaH-Fe(CO)₄ yielding NaHFe₂(CO)₈. Since NaHFe₂(CO)₈ reductions appear to give Fe(CO)₄ as an iron by-product, a steady-state concentration of NaH-Fe₂(CO)₈ would then be established. (49) T. Mitsudo, Y. Watanabe, M. Yamashita, and Y. Takegami, *Chem. Lett.*,
- 1385 (1974). They report that 1 atm of CO "dramatically" supresses this reaction. (50) The ¹³C CO resonance of NaHFe(CO)₄ was enhanced 65 \pm 16%. (51) R. Noyori, I. Umeda, and T. Ishigami, *J. Org. Chem.*, **37**, 1542 (1972). (52) R. W. Goetz and M. Orchin, *J. Am. Chem. Soc.*, **85**, 2782 (1963).

- (53) J. Kwiatek, Catal. Rev., 1, 37 (1967).
- (54) (a) R. K. Boeckman, Jr., and R. Michalak, J. Am. Chem. Soc., 96, 1623 (1974); (b) S. Masamune, G. S. Bates, and P. E. Georghiou, *ibid.*, 96, 3686 (1974)
- (55) (a) A. J. Birch and K. A. M. Walker, J. Chem. Soc. C, 1894 (1966); (b) R. E. Harmon, J. L. Parsons, D. W. Cooke, S. K. Gupta, and J.Schoolenberg, J. Org. Chem., 34, 3684 (1969); (c) J. F. Bielimann and M. J. Jung, J. Am. Chem. Soc., 90, 1673 (1968); (d) F. H. Jardine and G. Wilkinson, J. Chem. Soc. C, 270 (1967); (e) J. P. Candlin and A. R. Oldham, Discuss. Faraday
- Soc. 4, 46, 60, 92 (1967), (e) J. F. Caldini and A. A. Oldham, Discuss. Paraday Soc., 46, 60, 92 (1968).
 (56) (a) I. Ojima, "Organotransition Metal Chemistry", Y. Ishii and M. Tsutsui, Ed., Plenum Press, New York, N.Y., 1975, p 255; (b) I. Ojima, M. Kumagai, and Y. Nagai, Tetrahedron Lett., 4005 (1974); (c) I. Ojima and T. Kogure, Tetrahedron Lett., 4005 (1974); (c) I. Ojima and T. Kogure, Soc., 46, 60, 92 (1968). ibid., 5035 (1972).
- (57) (a) T. Kitamura, N. Sakamoto, and T. Joh, *Chem. Lett.*, 379 (1973); (b) T. Kitamura, T. Joh, and N. Hagihara, *ibid.*, 203 (1975).
 (58) Y. Sasson and J. Blum, *J. Org. Chem.*, 40, 1887 (1975).
- C. E. Castro, R. D. Stephens, and S. Mojé, J. Am. Chem. Soc., 88, 4964 (59) (1966).

- (60) S. B. Kadin, J. Org. Chem., 31, 620 (1966).
 (61) S. K. Malhortra, D. F. Meakly, and F. Johnson, J. Am. Chem. Soc., 89, 2794 (1967).
- (1007). (a) R. L. Augustine, J. Org. Chem., 23, 1853 (1958); (b) R. L. Augustine, 'Catalytic Hydrogenation', Marcel Dekker, New York, N.Y., 1965; (c) Ibid., (62)(a) R. L. p 60.
- p 60.
 (63) (a) M. Smith in ''Reduction'', R. L. Augustine, Ed., Marcel Dekker, New York, N.Y., 1988, pp 95–170; (b) A. J. Birch and H. Smith, *Q. Rev., Chem. Soc.*, 12, 17 (1958); (c) H. O. House, ''Modern Synthetic Reactions'', W. A. Benjamin, Menio Park, Calif., 1972, pp 173–181; (d) C. Djerassi, Ed., ''Steroid Reactions'', Holden-Day, San Francisco, Calif., 1963, pp 267–288, 299–325; (e) K. W. Bowers, R. W. Glese, J. Grimsaw, H. O. House, N. H. Kolodny, K. Kronberger, and D. K. Roe, *J. Am. Chem. Soc.*, 92, 2783 (1970); (f) H. O. House, R. W. Glese, K. Kronberger, J. P. Kaplan, and J. F. Simeone, *ibid.*, 92, 2800 (1970).
 (64) J. G. St. C. Buychanan and P. D. Woodnate, *O. Bay. Chem. Soc.*, 23, 522.
- J. G. St. C. Buchanan and P. D. Woodgate, Q. Rev., Chem. Soc., 23, 522 (64) (1969).
- These results have been verified in our laboratories, (65)
- (66) For example, consider the following mechanism:

$NaHFe_2(CO)_8 \rightleftharpoons NaHFe(CO)_4 + Fe(CO)_4$

$Fe(CO)_4 + RCH = CHCOR' = Fe(CO)_4(RCH = CHCOR')$

Fe(CO)₄(RCHCHCOR') + NaHFe(CO)₄ = II (Scheme II)

- (67) E. Welss, K. Stark, J. E. Lancaster, and H. D. Murdoch, Helv. Chim. Acta, 46, 288 (1963).
- (68) The rapid ¹³CO exchange with NaHFe(CO)₄ could involve the hydride's trans effect, ⁶⁹ since NaFFe(CO)₄ (R = acyl) gives only 5 % ¹³CO exchange in 22 h,^{29a} and could also involve an ion pair catalyzed CO dissociation.
- (69) J. E. Huheey, "Inorganic Chemistry: Principles of Structure and Reactivity", Harper and Row, New York, N.Y., 1972, p 423.
 (70) E. L. Muetterties and G. D. Stucky, unpublished results. We thank Professor
- (70) E. L. Muetterites and G. D. Stucky, unpublished results. We trained roles and Muetterities and Professor Stucky for permission to cite this result.
 (71) (a) For example, the iron-iron bond distances of 2.523 (1) Å in Fe₂(CO)₉ (three bridging CO's)^{71b} and 2.787 (2) Å in Fe₂(CO)₈²⁻ (no bridging groups),²⁵ respectively, support this conclusion. (b) F. A. Cotton and J. M. Toron Concerned and State and State and State and J. M.
- groups),²⁵ respectively, support this conclusion. (b) F. A. Cotton and J. M. Troup, J. Chem. Soc., Dalton Trans., 800 (1974).
 (72) M. R. Churchill and S. W. Y. Chang, Inorg. Chem., 13, 2413 (1974).
 (73) (a) B. R. James, "Homogeneous Hydrogenation", Wiley, New York, N.Y., 1973, pp 123–147; (b) J. Kwiatek, Catal. Rev., 1, 37 (1967); (c) L. M. Jackman, J. A. Hamilton, and J. M. Lawlor, J. Am. Chem. Soc., 90, 1914 (1968); (d) J. Halpern and L. Y. Wong, *ibid*, 90, 6665 (1968).
 (74) The radicals we have observed by ESR increase or remain at approximately the same concentration during reduction reactions. Thus these radicals are stable—present even long after the reaction is complete—and appear
- are stable—present even long after the reaction is complete—and appear to be small concentrations of radical *products*, not reactive intermediates. However, further studies will be required to determine whether or not these ESR signals are due to HFe(CO)₄, and Fe(CO)₄⁻, and whether or not these radicals are responsible for the cis \rightleftharpoons trans olefin isomerizations and allylic carbon-hydrogen bond activations that we have observed.
- (75) One possible structure is obtained by the formation of a (ketonic) bridging carbonyl without a metal-metal bond (a "metal migration") as previously suggested by Poë^{10b}). Kinetic evidence for the existence of some type of intermediate (thought to be a bridging carbonyl without a metal-metal bond, analogous to D) exists in other systems.⁷⁶ Also D is consistent with our

finding that tight-ion pairs are more reactive in these reductions and that the Na⁺ cation binds preferentially to the bridging carbonyls. Caution should be exercised, however, as to what structures like D really mean. Cotton^{77a} has suggested that bridging carbonyls cannot exist in the absence of a metal-metal bond. He77b and others77c have pointed out that bridging carbonyls are not "ketonic bridges" but are, rather, best described as three-center, two-electron bonds (as we have indicated in C and D by the use of singly headed arrows). This view is consistent with the different bond angles observed in the two systems. For bridging carbonyls, the M–C–M angle^{77c} is about 80° while the corresponding angle in organic carbonyl compounds is about 120°

- (76) (a) P. F. Barrett and K. K. W. Sun, Can. J. Chem., 48, 3300 (1970); (b) B. (a) The Barrett and W. J. Jacobs, *Ibid.*, **50**, 972 (1972); (c) However, note that the Barrett work^{76a,b} has been questioned by others^{76d} and that these reactions are greatly enhanced by light; (d) J. D. Cotton and A. M. Trewin, J. Organomet. Chem., 117, C7 (1976).
- (77) (a) F. A. Cotton and D. L. Hunter, *Inorg. Chem.*, **13**, 2044 (1974); (b) F. A. Cotton, *Prog. Inorg. Chem.*, **21**, 1 (1976); (c) P. S. Braterman, *Struct. Bonding (Berlin)*, **10**, 57 (1972).
- (a) The inverse isotope effect requires that $k_{-1} > k_2$, k_3 [HOAC] and that the concentration of II be small. The isotope effect arises from zero point (78) energy differences between C-H and Fe-H vs. C-D and Fe-D vibrations. energy differences between C-H and Fe-H vs. C-D and Fe-D vibrations. Using $Ru_4H_4(CO)_{12}$ as a model (S. A. R. Knox, J. W. Koepke, M. A. Andrews, and H. D. Kaesz, J. Am. Chem. Soc., **97**, 3942 (1975)), bands are observed at 1585, 1442 (Raman), and 1290 cm⁻¹ which shift to 1153, 1019, and 909 cm⁻¹ in the deuteride. The 1019-cm⁻¹ value was calculated assuming that the 1442-cm⁻¹ band will shift by $1/\sqrt{2}$. For the alkyl intermediate, chloroform was used as a model. The chloroform C-H bond shows a stretching vibration at 3019 cm⁻¹ and a twofold degenerate bending vibration at 1259 cm⁻¹. These values are shifted to 2256 and 908 cm⁻¹, respectively, in CDCl₃ (see R. W. Alder, R. Baker, and J. M. Brown, "Mechanisms in Organic Chemistry", Wiley-Interscience, New York, N.Y., 1971, p 15). These values give $K_0/K_H \approx 2$. While these calculations are not intended to be definitive, they do show that a preequilibrium of the type I \rightleftharpoons II will account for the observed isotope effect. (b) Although it has been argued^{79a} that hydrogen give an inverse isotope effect, others^{79b} have concluded that no authentic examples of this exist.
- (79) (a) L. Melander, Acta Chem. Scand., 25, 3821 (1971); (b) R. P. Bell, Chem. M. Poliakoff and J. J. Turner, J. Chem. Soc., Dalton Trans., 2276
- (80) 1974)
- only Fe(CO)₄L. The following pathway will account for Fe(CO)₃L₂ formation.⁸³ (81) The product, Fe(CO)₃L₂, is often observed⁸² when one would naively expect

Others have also proposed that Fe(CO)₄ dimerization may be involved. I. Fischler, K. H. Idenbrand, and E. K. Von Gustorf, Angew. Chem., 87, 35 (1975).

- G. Gardaci, Inorg. Chem., 13, 368 (1974).
- (83) The formation of Fe(CO)₃L₂ cannot be accounted for by the very slow reaction, Fe(CO)₄L + L → Fe(CO)₃L₂ + CO (rate = k[Fe(CO)₄L]; k = 2.7 × 10⁻⁴ s⁻¹ at 179 °C in decalin): E. E. Siefert and R. J. Angelici, J. Organomet. Chem., 8, 374 (1967).
- (84) W. G. Dauben, G. W. Shaffer, and N. D. Vietmeyer, J. Org. Chem., 33, 4060 (1968).
- J. C. Fairlie, G. L. Hodgson, and T. Money, J. Chem. Soc., Perkin Trans. (85) 1, 2109 (1973).
- (86) J. Colonge, J. Dreux, and M. Thiers, C.R. Acad. Sci., 243, 1425 (1958).
- (87) C. C. Price and J. M. Judge, *Org. Synth.*, **45**, 22 (1966).
 (88) R. L. Augustine and J. A. Caputo, "Organic Syntheses", Collect. Vol. V, Wiley, New York, N.Y., 1973, p 869.
 (89) R. G. Komoto, Ph.D. Thesis, Stanford University, Stanford, Calif.,
- 1974
- (90) J. N. Cawse, Ph.D. Thesis, Stanford University, Stanford, Calif., 1973.
 (91) R. M. Izatt, B. L. Haymore, J. S. Bradshaw, and J. J. Christensen, *Inorg.*
- Chem., 14, 3132 (1975). (92) R. Madon, Ph.D. Thesis, Stanford University, Stanford, Calif., 1974.
- (92) W. F. Edgeil, M. T. Yang, B. J. Bulkin, R. Bayer, and N. O. Koizumi, *J. Am. Chem. Soc.*, **87**, 3080 (1965).
 (94) I. Wender and P. Pino, "Organic Synthesis via Metal Carbonyls", Wiley-Interscience, New York, N.Y., 1968, p 121.